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Preface

Traditionally, computer vision has focused on the visible band for a variety of
reasons. The visible band sensors are cheap and easily available. They are also
sensitive in the same electromagnetic band as the human eye, which makes
the produced data more interesting from the psychophysiology point of view.
In fact, computer vision was pre-occupied for a long time with the problem of
understanding and imitating the human visual system. Recently, this obses-
sion subsided and computer vision research focused more on solving particular
application problems with or without the help of the human visual paradigm.
A case in point is the significant progress achieved in object tracking.

It so happens that many imaging applications cannot be addressed in the
visible band. For example, visible sensors cannot see in the dark; thus, they
are not very useful in military applications. Visible radiation cannot penetrate
the human body and, therefore, cannot be a viable medical imaging modality.
Other electromagnetic bands and sensor modalities have been identified and
developed over the years that can solve all these problems, which are beyond
the reach of the visible spectrum. Initially, it was primarily phenomenological
and sensory work that was taking place. Later came algorithmic work, and
with that computer vision beyond the visible spectrum was born.

In this book, we explore the state-of-the-art in Computer Vision Beyond
the Visible Spectrum (CVBVS) research. The book is composed of nine chap-
ters which are organized around three application axes:

1. Military applications with an emphasis on object detection, tracking, and
recognition.

2. Biometric applications with an emphasis on face recognition.
3. Medical applications with an emphasis on image analysis and visualiza-

tion.

Although the chapters describe research, they are not written as typical re-
search papers. They have a tutorial flavor appropriate for a book.

The book opens with the military applications since they represent the
birthplace of CVBVS. All the major modalities used in military applications
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are represented in the first five chapters. These include SAR (Synthetic Aper-
ture Radar), laser radar, hyperspectral, and infrared. The first five chapters
also address fundamental issues with regard to object detection, tracking, and
recognition, sometimes in more than one modality. This allows comparative
evaluation of these important computational imaging questions across the
electromagnetic spectrum.

In Chapter 1, Boshra and Bhanu et al. describe a theoretical framework for
predicting the performance of object (target) recognition methods. The issue
of identifying military targets in imagery is of great importance in military
affairs. For years, target recognition was based purely on heuristics, and as a
result performance was brittle. Boshra and Bhanu’s work is representative of
a more rigorous methodological approach, which promises to transform target
recognition from art to science.

In Chapter 2, Bhanu and Jones unveil specific methods for improving
the performance of an SAR target recognition system. SAR is probably the
most successful imaging modality for military applications, because of its all-
weather capability. Bhanu and Jones’ methods conform to the model-based
framework and involve incorporation of additional features, exploitation of a
priori knowledge, and integration of multiple recognizers.

In Chapter 3, Arnold et al. present target recognition methods in a differ-
ent modality, namely, three-dimensional laser radar. Three-dimensional laser
radars measure the geometric shape of targets. The main approach described
in this chapter is quite appealing because it bypasses detection and segmen-
tation processes.

In Chapter 4, Kwon et al. deal with target recognition in the context of
hyperspectral imagery. The basic premise of hyperspectral target recognition
is that the spectral signatures of target materials are measurably different
than background materials. Therefore, it is assumed that each relevant mate-
rial, characterized by its own distinctive spectral reflectance or emission, can
be identified among a group of materials based on spectral analysis of the
hyperspectral data. Kwon et al. use independent component analysis (ICA)
to generate a target spectral template. ICA is a method well-suited to the
modular character of hyperspectral imagery.

In Chapter 5, Vaswani et al. close the sequence of military application pa-
pers by presenting a method for object detection and compression in infrared
imagery. The proposed solution is guided by the limitations of the target plat-
form, which is an infrared camera with on-board chip. The object detection
method is computationally efficient, to deal with the limited processing power
of the on-board chip. It is also paired with a compression scheme to facilitate
data transmission.

Chapter 6 deals with biometrics and signals a transition from the military
to civilian security applications. Wolff et al. present a face recognition ap-
proach based on infrared imaging. Infrared has advantages over visible imaging
for face recognition, especially in the presence of variable lighting conditions.
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Wolff et al. provide quantitative support for this argument by unveiling a
system that performs comparative evaluation.

Chapter 7 opens the medical applications part of the book. It refers to car-
diovascular image analysis of magnetic resonance imagery (MRI). While SAR
is probably the most successful modality for military applications, one could
make the case that MRI is the most successful modality for medical applica-
tions. Initially, MRI was treated much like x-rays. A radiologist, without any
machine assistance, was interpreting the raw imagery. Increasingly, however,
computer vision methods aid in this interpretation. In this chapter, Sonka et
al. present techniques for 3D segmentation and quantitative assessment of left
and right cardiac ventricles, arterial and venous trees, and arterial plaques.

In Chapter 8, Fenster et al. present segmentation and visualization tech-
niques in another very important medical imaging modality, that is, ultra-
sound. Specifically, the authors describe methods to reconstruct ultrasound
information into 3D images to facilitate interactive viewing. They also describe
automated and semi-automated segmentation methods to quantify organ and
pathology volume for monitoring disease.

In Chapter 9, Berry et al. introduce some very interesting image analysis
work on a novel medical imaging modality, namely, terahertz pulsed imag-
ing. Vis-a-vis the more established MRI and ultrasound modalities, terahertz
pulsed imaging is the “new kid on the block”. Berry et al. propose Fourier
transforms and wavelets to analyze spectroscopic information of materials.
They actually demonstrate that these methods perform as well as traditional
analysis methods for material properties and predict a number of biomedical
applications that stand to benefit form this technology.

The book can be used for instruction in graduate seminars or as a reference
for the independent researcher. Although CVBVS is a broad and fast moving
field, the balanced selection of key theoretical and practical issues represented
in the chapters of the book will maintain their relevance for some time. It is
our sincere hope that the book will serve as a springboard for the individual
researcher who is interested in CVBVS research.

A number of people have contributed in our effort and we are deeply
grateful to all of them. These certainly include the authors of the individual
chapters and the reviewers who patiently went through three review cycles.
We are especially grateful to Pradeep Buddharaju who handled most of the
last minute editing and thanks to whom the book assumed its finished form.

Houston, Texas Ioannis Pavlidis
Riverside, California Bir Bhanu
USA
January 2004
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Chapter 1

A Theoretical Framework for Predicting
Performance of Object Recognition

Michael Boshra1 and Bir Bhanu2

1 Center for Research in Intelligent Systems, University of California, Riverside,
California 92521, michael@cris.ucr.edu

2 Center for Research in Intelligent Systems, University of California, Riverside,
California 92521, bhanu@cris.ucr.edu

Summary. The ability to predict the fundamental performance of model-based ob-
ject recognition is essential for transforming the object recognition field from an art
to a science, and to speed up the design process for recognition systems. In this
chapter, we address the performance–prediction problem in the context of a com-
mon recognition task, where both model objects and scene data are represented by
locations of 2D point features. The criterion used for estimating matching quality
is based on the number of consistent data/model feature pairs, which we refer to
as “votes.” We present a theoretical framework for prediction of lower and upper
bounds on the probability of correctly recognizing model objects from scene data.
The proposed framework considers data distortion factors such as uncertainty (noise
in feature locations), occlusion (missing features), and clutter (spurious features). In
addition, it considers structural similarity between model objects. The framework
consists of two stages. In the first stage, we calculate a measure of the structural
similarity between every pair of objects in the model set. This measure is a func-
tion of the relative transformation between the model objects. In the second stage,
the model similarity information is used along with statistical models of the data
distortion factors to determine bounds on the probability of correct recognition.
The proposed framework is compared with relevant research efforts. Its validity is
demonstrated using real synthetic aperture radar (SAR) data from the MSTAR
public domain, which are obtained under a variety of depression angles and object
configurations.

1.1 Introduction

Model-based object recognition has been an active area of research for over
two decades (e.g., see surveys [1, 2, 3, 4]). It is concerned with finding in-
stances of known model objects in scene data. This process involves extracting
features from the scene data, and comparing them with those of the model
objects using some matching criterion. Performance of the recognition pro-
cess depends on the amount of distortion in the data features. Data distortion
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2 Michael Boshra and Bir Bhanu

can be classified into three types: (1) uncertainty: noise in feature locations
and other feature attributes; (2) occlusion: missing features of data object
of interest; and (3) clutter: spurious data features which do not belong to
the data object of interest. In addition to data distortion, recognition perfor-
mance depends on the degree of structural similarity between model objects.
The often-overlooked similarity factor can have a profound impact on perfor-
mance. Intuitively, the difficulty of recognizing a specific object is proportional
to the degree of its similarity with the rest of the objects in the model set.

model objects

performance results

real test images

Object Recognition System

performance results

data-distortion models

synthetic test images

model objects

Image Synthesis

Module

Object Recognition System

(a) (b)

Figure 1.1. Empirical approaches for estimation of object recognition performance:
(a) using real data, (b) using synthetic data.

Performance of object recognition is typically estimated empirically. This
is done by passing a set of scene images containing known model objects to a
recognition system, and then analyzing the output of the system. The set of
scene images can be either real [5, 6, 7], or synthetic with artificial distortion
introduced to them [8, 9, 10]. Both scenarios are illustrated in Figures 1.1(a)
and 1.1(b), respectively. Empirical performance evaluation has a number of
limitations:

1. It does not provide an understanding of the relationship between object
recognition performance and the various data and model factors that af-
fect it. In other words, the empirical approach can provide an answer
to the question of what performance to expect, for a given set of model
objects and specific data distortion rates. However, it does not explain
why this is the expected performance. Such an understanding is critical
for designing better object recognition systems, as it can provide funda-
mental answers to questions such as: (a) When does performance break
down as a function of the amount of data distortion? (b) What are the
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performance limits when using a specific sensor? (c) Is a given feature-
selection scheme sufficient for achieving desired levels of performance? (d)
What is the largest size of a model set that can be accommodated without
significantly degrading performance? Fundamental understanding of the
relationship between performance and the factors affecting it is essential
for the advancement of the field of object recognition from an art to a
science.

2. The performance estimated empirically is dependent upon the actual im-
plementation of the object recognition system. This implementation can
be based on recognition approaches such as alignment [11, 12], hypothesis
accumulation [13, 14], or tree search [15, 16]. Note that the performance
obtained using these approaches can be different, even if they use simi-
lar matching criteria. For example, systems that use a vote accumulator
(Hough space) will generate different performance estimates depending
on the resolution of the accumulator. Another example, alignment-based
systems, achieve polynomial-time complexity by using a “looser” notion
of data/model feature consistency.

3. Empirical evaluation requires the presence of an actual object recognition
system. Obviously, this can considerably slow down the design process.

In this chapter, we address the performance–prediction problem in the
context of a typical object recognition task. It can be described as follows.
(1) Both model objects and scene data are represented by discretized loca-
tions of 2D point features. (2) A data object is assumed to be obtained by
applying a 2D transformation to the corresponding model object. Notice that
the space of possible 2D transformations is naturally discretized, since we are
dealing with discrete 2D point features. (3) The data/model matching qual-
ity is estimated using a vote-based criterion. In particular, the quality of a
given match hypothesis is estimated by counting the number of consistent
data/model feature pairs, which we refer to as “votes.”

We present a statistical method for formally predicting lower and upper
bounds on the probability of correct recognition (PCR) for the task outlined
above. The proposed method considers data distortion factors such as uncer-
tainty, occlusion, and clutter, in addition to model similarity. Integrating these
data and model factors in a single approach has been a challenging problem.
The performance predicted is fundamental in the sense that it is obtained
by analyzing the information provided by both the data and model features,
independent of the particular vote-based matching algorithm. A schematic di-
agram of the prediction method is shown in Figure 1.2. It can be contrasted
with the diagrams of the empirical approaches shown in Figure 1.1. The va-
lidity of the proposed method is demonstrated using real synthetic aperture
radar (SAR) data from the MSTAR public domain. This data set is obtained
under a variety of depression angles and object configurations.

The remainder of this chapter is organized as follows. The next section
reviews related research efforts, and highlights our contributions. Section 1.3
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performance results

Performance Prediction Method

data-distortion models model objects

Figure 1.2. Formal estimation of object recognition performance.

presents an overview of the proposed method. Sections 1.4 and 1.5 describe the
statistical modeling of the data distortion factors, and the object similarity,
respectively. Derivation of lower and upper bounds on PCR is presented in
Section 1.6. The validity of those bounds is demonstrated in Section 1.7, by
comparing actual PCR plots, as a function of data distortion, with predicted
lower and upper bounds. Finally, conclusions and directions for future research
are presented in Section 1.8.

1.2 Relevant Research

Several research efforts have addressed the problem of analyzing performance
of feature-based object recognition. Most of these efforts focus on the prob-
lem of discriminating objects from clutter. We present here a representative
sample of these efforts. Grimson and Huttenlocher [17] presented a statistical
method for estimating the probability distribution of the fraction of consis-
tent data/model feature pairs for an erroneous hypothesis. They derived such
a distribution using a statistical occupancy model (Bose–Einstein model),
assuming bounded feature uncertainty and uniform clutter models. This dis-
tribution was used to determine the minimum fraction of consistent feature
pairs required to achieve a desired probability of false alarm. Sarachik [18]
studied the problem of predicting the receiver operating characteristic (ROC)
curve for a specific recognition algorithm. The ROC curve described the re-
lationship between the probability of correct recognition and that of a false
alarm. The chosen algorithm used a weighted voting criterion based on Gaus-
sian feature uncertainty. A statistical analysis was presented to determine the
probability distributions of the weighted votes for both valid and invalid hy-
potheses, assuming uniform occlusion and clutter models. These distributions
were used along with the likelihood-ratio test to predict the ROC curve. Alter
and Grimson [8] used statistical knowledge about sources of data distortion
to design a recognition criterion, based on the likelihood-ratio test. The like-
lihoods of observed data-feature set, conditioned on hypothesis validity and
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invalidity, were calculated by assuming both bounded and Gaussian feature
uncertainty models, in addition to uniform occlusion and clutter models. Lin-
denbaum [19] extended the modeling of clutter to include background objects
of known shape, in addition to uniformly distributed random features. This
hybrid model was incorporated into a statistical analysis to predict the num-
ber of features needed to guarantee recognition of a data object at a given
confidence level. The analysis considered bounded feature uncertainty, as well
as structural similarity between a given data object and background ones.
Irving et al. [20] derived a theoretical bound on the ROC curve of an object
detection task. The generalized likelihood-ratio test was used to discriminate
between model objects at various poses and random clutter. The likelihoods
of both clutter and model objects were modeled using 2D Poisson processes.
Modeling object likelihood as a Poisson process was based on the assumption
of independence of object views at discretized poses. This work considered
bounded feature uncertainty, and uniform occlusion and clutter models.

The problem of discriminating objects from other model objects has re-
ceived considerably less attention than object/clutter discrimination. This
problem is obviously central to integrated performance prediction of object
recognition. It requires consideration of not only data distortion but also ob-
ject similarity. In addition, it requires consideration of the interaction between
object similarity and data distortion. Lindenbaum [21] presented a probabilis-
tic analysis for predicting lower and upper bounds on the number of data
features required to achieve a certain confidence level in object localization or
recognition. It explicitly considered the similarity between different model ob-
jects, as well as the self-similarity between a model object and an instance of
itself at a different relative pose. The data distortion factors considered were
bounded uncertainty and occlusion. The analysis considered extreme cases
in modeling the interaction between occlusion and similarity, thus resulting
in the generation of relatively loose bounds. We note that the analysis pre-
sented in [19], outlined above, can be used in the context of object/object
discrimination considering uncertainty and clutter, as well as object similar-
ity. Grenander et al. [22] addressed the problem of predicting fundamental
error in object pose estimation. In their work, objects were represented by
templates at the pixel level. A minimum mean-square-error estimator, the
Hilbert–Schmidt estimator, was used to estimate object pose in the presence
of pixel uncertainty. Performance of object/object discrimination was deter-
mined partially empirically through the synthesis of distorted templates of one
object, and then using the likelihood-ratio test, based on the Hilbert–Schmidt
estimator, as a recognition criterion (refer to Figure 1.1(b)).

The methods outlined above are summarized and compared with our
method in Table 1.1. This table highlights the main contribution of our work,
namely the integration of uncertainty, occlusion, clutter, and similarity fac-
tors in a single approach for performance prediction. As shown in the table,
previous methods considered only a subset of these factors. It can also be seen
that our method is unique among other object/object discrimination methods
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Table 1.1. Comparison between performance-analysis methods (U , O, C, and S
denote uncertainty, occlusion, clutter, and similarity, respectively).

Work Discrimination Data/Model Features Transform. Factors
U O C S

Grimson et al. [17] object/clutter 2D/2D lines rigid X X
Sarachik [18] object/clutter 2D/2D points affine X X X
Alter and Grimson [8] object/clutter 2D/3D points & lines weak persp. X X X
Lindenbaum [19] object/clutter 2D/2D boundary pts. affine X X X
Irving et al. [20] object/clutter 2D/2D points 2D transl. X X X
Lindenbaum [21] object/object 2D/2D boundary pts. rigid X X X
Grenander et al. [22] object/object pixel-level templates rotation X
This work object/object 2D/2D discretized pts. 2D transl. X X X X

in that it considers point features. Another unique aspect of this work is not
just the new theory but also the validation using real data. We note that parts
of this work have appeared in [23, 24, 25].

1.3 Overview

In this section, we present an overview of the proposed performance–prediction
method. Our problem can be formally defined as follows. We are given the
following:

1. A set of model objects, MD = {Mi}, where each object Mi is represented
by discretized locations of 2D point features, Mi = {Fik}.

2. Statistical data distortion models.
3. A class of data/model transformations, T .

Our objective is to predict lower and upper bounds on PCR as a function of
data distortion. We consider recognition to be successful only if the selected
hypothesized object is the actual one, and the difference between the hypoth-
esized pose and the actual one is small. The pose error can be represented by
the relative pose of the hypothesized object with respect to the actual one. It
is considered acceptable if it lies within a subspace, Tacc ⊂ T . We assume in
this work that Tacc = {0}, i.e., only exact object location is acceptable.

A block diagram of the proposed method is shown in Figure 1.3. The main
elements in this diagram can be described as follows:

• Data-Distortion Models: The data distortion factors are statistically
modeled using uniform probability distribution functions (PDFs).

1. Uncertainty: The location of the data feature corresponding to a model
feature is described by a uniform distribution. Notice that the uncertainty
PDFs are discrete, since the feature locations considered in this work are
discretized. We further assume that the PDFs associated with different
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Object Similarity
            of

   Computation

occlusion uncertaintyclutter
Data-Distortion Models

Computation of Performance Bounds

similarity histograms

Lower and Upper PCR Bounds

Model
Objects

Class
Transformation

Figure 1.3. Block diagram of performance–prediction method.

model features are independent. We argue that such independence as-
sumption is reasonable in most practical applications.

2. Occlusion: We assume that every subset of model features is equally likely
to be occluded as any other subset of the same size. This assumption is
more appropriate for modeling features that are missing due to inherent
instability or imperfections of feature extraction. It is less suitable for
modeling features that are missing due to being occluded by other ob-
jects, since it does not consider the spatial-correlation aspect among oc-
cluded/unoccluded features. Spatial correlation can be captured by using
Markov random fields [9, 26, 27], at the expense of significantly increasing
the complexity of the analysis. In Section 1.7, we outline a simpler ap-
proach that can implicitly consider the spatial-correlation factor, without
increasing the analysis complexity.

3. Clutter: We assume that clutter features are uniformly distributed within
a region surrounding the object. This distribution is useful for modeling
random clutter, which does not have specific spatial structure. Modeling
“structural” clutter requires analyzing its similarity with model objects.
We note that the similarity-modeling concepts presented in this work can
be used in modeling of structural clutter. This topic is a subject for future
research.

• Computation of Object Similarity: The purpose of this stage is to com-
pute the structural similarity information among all pairs of model objects.
Our definition of object similarity depends on the amount of feature uncer-
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tainty. In particular, the similarity between two model objects is directly pro-
portional to feature uncertainty. This agrees with the intuitive observation
that as different objects become more “blurred,” it becomes more difficult
to differentiate between them, which is, in a sense, equivalent to saying that
they become more “similar.” The similarity between a model object, Mi, and
another one, Mj , is defined as the number of votes for Mj given an uncer-
tain instance of Mi, i.e., an instance of Mi that is obtained by randomly
perturbing its features. Accordingly, the number of votes for Mj is a random
variable. The chosen definition of similarity depends on the relative transfor-
mation between Mi and Mj , defined by transformation class T . Accordingly,
the similarity between Mi and Mj can be viewed as a probabilistic function,
which we call the similarity function. The similarity information is encoded in
two histograms, which we call all-similarity and peak-similarity histograms, to
be described in Section 1.5.2. These histograms are used for predicting lower
and upper PCR bounds, respectively.
• Computation of Performance Bounds: The objective of this stage is
to compute PCR bounds. The computation is based on estimating the PDF
of the votes for a specific erroneous object/pose hypothesis, given a “dis-
torted” instance of a given model object. The estimation process takes into
account the structural similarity between the model object and the erroneous
hypothesis. The vote PDF is used to determine the probability of a recognition
failure, which occurs if the erroneous hypothesis gets same or more votes than
the distorted object. This information is integrated for potential erroneous
hypotheses to determine the PCR bounds.

1.4 Data-Distortion Models

We formally model the effects of the three distortion factors considered in
this work on a “perfect” model object. This modeling is used to determine
the vote PDF in Sect. 1.6.2.
• Uncertainty: The effect of the uncertainty factor is to perturb locations
of model features according to some PDF. Since this PDF is assumed to be
uniform, it can be represented by a region. Let Fik ∈ Mi be a model feature,
and F̂ik be a distorted instance of it. Define Ru(Fik) to be the consistency
region associated with Fik. Such region bounds the possible locations of F̂ik

given Fik, i.e., F̂ik ∈ Ru(Fik). Likewise, we can say that Fik ∈ R̄u(F̂ik), where
R̄u(·) is the reflection of Ru(·) about the origin. Practically, Ru(·) is the same
as R̄u(·), because Ru(·) is symmetric about the origin (e.g., circle, square).
Accordingly, we assume in this work for simplicity that R̄u(·) = Ru(·). An
uncertain instance of Mi can be obtained by uniformly perturbing each of
its features within corresponding consistency region. This can be formally
represented as:

Du(Mi, Ru(·)) = {Pu(Ru(Fik)) : Fik ∈ Mi},
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where Pu(R) is a function that returns a feature selected randomly within
region R.
• Occlusion: The effect of occlusion is the elimination of some model features.
An occluded instance of Mi can be formally defined as

Do(Mi, O) = Mi − Po(Mi, O),

where Po(Mi, O) is a function that returns a subset of O features selected
randomly from Mi. For a fixed O, all subsets generated by Do(Mi, O) are
equally likely to occur, since we are assuming uniform occlusion.
• Clutter: The effect of clutter on a model object is the addition of spurious
features to it. They are assumed to be uniformly distributed within a clutter
region, Rc, surrounding the model object. This region can have an arbitrary
shape (e.g., bounding box of model features, convex hull, etc). A cluttered
instance of Mi can be defined as

Dc(Mi, C, Rc, Rx) = Mi ∪ Pc(C, Rc − Rx),

where Pc(C, R) is a function that returns C features selected randomly within
region R, and Rx is a region that clutter features are excluded from falling
into. The reason for including Rx is explained below.
• Combined Distortion: Consideration of the combined effects of uncer-
tainty, occlusion, and clutter on a model object raises an ambiguous situa-
tion. It takes place when a model feature gets occluded and then a spurious
feature falls within its consistency region. The ambiguity arises from the fact
that this situation can not be distinguished from the no-occlusion/no-clutter
case. In order to simplify the analysis, we assume the latter case. This can
be modeled by restricting the clutter features to lie outside region Rx, de-
fined as the union of the consistency regions of occluded features. We refer
to Rc − Rx, or simply R′

c, as the effective clutter region. A distorted instance
of Mi, M̂i(Ru(·), O, C, Rc), can be obtained by first occluding O features of
Mi, perturbing unoccluded ones within their consistency regions Ru(·), and
then randomly adding C clutter features within the effective clutter region
R′

c. This can be represented formally as:

M̂i(Ru(·), O, C, Rc) = Dc(Du(Do(Mi, O), Ru(·)), C, Rc, Rx),

where Rx = ∪kRu(Fik), ∀Fik ∈ (Mi − Do(Mi, O)). Figure 1.4 shows an
example of the distortion process.

1.5 Computation of Object Similarity

In this section, we formally define a measure of the structural similarity be-
tween model objects, and outline the method used to construct the similarity
histograms.
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Figure 1.4. An illustration of the different stages of the distortion process: (a)
original object consisting of six features (dark circles), (b) after occlusion (O = 2;
small circles represent occluded features), (c) after perturbation (Ru(·) = a circle;
small double circles represent locations of features before perturbation), (d) after
clutter (C = 3; small crosses represent clutter features; notice absence of clutter
features inside consistency regions of the two occluded features), (e) distorted object.

1.5.1 Definition of Object Similarity

We introduce a number of definitions that lead to a definition of the similarity
between a pair of model objects.
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• Vote-Based Criterion: Let Mτ̂
i = {F τ̂

ik} be object Mi at pose τ̂ ∈ T
with respect to a data object, M̂. We refer to Mτ̂

i as a hypothesis of object
Mi at location τ̂ . The votes for Mτ̂

i , given M̂, is the number of features in
Mτ̂

i that are “consistent” with at least a data feature in M̂. A model feature,
F τ̂

ik ∈ Mτ̂
i , is said to be consistent with a data feature, F̂l ∈ M̂, if F̂l falls

within the consistency region of F τ̂
ik, i.e., F̂l ∈ Ru(F τ̂

ik). Accordingly, we can
formally define the votes for Mτ̂

i given M̂ as follows:

VOTES(Mτ̂
i ; M̂) =|{F τ̂

ik : F τ̂
ik ∈ Mτ̂

i and ∃F̂l ∈ M̂ s.t. F̂l ∈ Ru(F τ̂
ik)}| .(1.1)

• Feature/Feature Similarity: Let us assume that we are given a pair
of model features, Fik ∈ Mi and F τi

jl ∈ Mτi
j , where Mτi

j is a hypothesis
of object Mj at location τi ∈ T with respect to object Mi. The similarity
between Fik and F τi

jl , denoted by Sff (Fik, F τi

jl ), is defined as the probability
that an uncertain measurement of Fik is consistent with F τi

jl . Formally, we
have

Sff (Fik, F τi

jl ) =
AREA(R(Fik) ∩ R(F τi

jl ))
AREA(R(Fik))

,

where AREA(R) is area of region R. Obviously, Sff (Fik, F τi

jl ) lies in the range
[0, 1]. It is proportional to the extent of overlap between the consistency re-
gions of Fik and F τi

jl (R(Fik) and R(F τi

jl )). Figure 1.5 illustrates Sff (Fik, F τi

jl )
as a function of τi, for a sample of three consistency regions. In some cases,
we refer to feature pairs with overlapping/nonoverlapping consistency regions
as similar/dissimilar feature pairs, respectively.
• Object/Feature Similarity: We define the similarity between an object,
Mi, and a feature, F τi

jl ∈ Mτi
j , as the probability that F τi

jl is consistent
with an uncertain measurement of any feature in Mi. We can formally define
object/feature similarity, denoted by Sof (Mi, F

τi

jl ), as

Sof (Mi, F
τi

jl ) = 1 −
∏
k

(1 − Sff (Fik, F τi

jl )).

• Object/Hypothesis Similarity: Let us denote the similarity between
Mi and Mτi

j as Soh(Mi,Mτi
j ) or simply Sτi

j . We define Sτi
j as the number

of votes for hypothesis Mτi
j , given an uncertain instance of Mi, which is

Du(Mi, Ru(·)) (refer to Section 1.4). Formally,

Sτi
j = VOTES(Mτi

j ; Du(Mi, Ru(·))).

It is obvious that Sτi
j is a random variable. The minimum value of Sτi

j is the
number of coincident feature pairs of Mi and Mτi

j . It can be expressed as

min(Sτi
j ) = | {F τi

jk : Sof (Mi, F
τi

jk) = 1} | .
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Figure 1.5. : An illustration of feature/feature similarity for a variety of consistency
regions assuming T is the space of 2D translations: (a) a circle of unit radius, (b)
a discrete eight-neighbor region, (c) a point region (implies absence of positional
uncertainty). Note that the components of τi along the x- and y-axes are represented
by τix, and τiy, respectively. We assume here for simplicity that Fik = F τi

jl when
τi = 0.
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On the other hand, the maximum value of Sτi
j is the number of features of

Mτi
j that are similar to features in Mi (i.e., whose consistency regions overlap

with consistency regions of features in Mi). Thus,

max(Sτi
j ) = | {F τi

jk : Sof (Mi, F
τi

jk) > 0} | .

The expected value of Sτi
j can be approximated as

E(Sτi
j ) ≈

∑
k

Sof (Mi, F
τi

jk),

where F τi

jk ∈ Mτi
j . Figure 1.6 shows an example of object/hypothesis similar-

ity.

M
j

M
i τi

Figure 1.6. An illustration of object/hypothesis similarity. Notice that there are
three similar feature pairs with feature/feature similarity values of approximately
1
3 , 2

3 and 1. Accordingly, we have Sτi
j ∈ [1, 3], and E(Sτi

j ) ≈ 2.

• Uniform Model of Object/Hypothesis Similarity: In order to make
the prediction of PCR bounds mathematically tractable, we make the follow-
ing reasonable assumptions about Mi, Mτi

j and the structure of their similar
feature pairs:

1. The consistency regions of the features that belong to each of Mi and
Mτi

j are not overlapping.
2. The correspondence between similar features in Mi and Mτi

j is bijective
(one-to-one).

3. The feature/feature similarity between every pair of similar features is
a constant value, P τi

j . It is the average object/feature similarity of the
features in Mτi

j that are similar to features in Mi.

The above assumptions result in a “uniform” view of the structural similarity
between object Mi and hypothesis Mτi

j . As an illustration, Figure 1.7 shows
the uniform model corresponding to the object/hypothesis pair shown in Fig-
ure 1.6. The uniform similarity model leads to the approximation of the PDF
of Sτi

j by the following binomial distribution:
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PS
τi
j

(sτi
j ) = BS

τi
j

(sτi
j ; Nτi

j , P τi
j ),

where PX(x) = Pr[X = x], BX(x; n, p) = K(n, x)px(1 − p)n−x, K(a, b) =
a!

(a−b)! b! ,

Nτi
j = max(Sτi

j ), and

P τi
j =

E(Sτi
j )

Nτi
j

.

M
j

M
i τi

Figure 1.7. Uniform similarity model for object/hypothesis pair shown in Figure
1.6. Notice that similar feature pairs have constant feature/feature similarity, P τi

j ≈
2
3 and Nτi

j = 3.

• Object/Object Similarity: The similarity between a pair of objects, Mi

and Mj , is defined as the object/hypothesis similarity Sτi
j , for all τi ∈ T .

Thus, object/object similarity can be viewed as a probabilistic function. As
an illustration, Figure 1.8(a) shows a pair of simple model objects. The cor-
responding expected-similarity function, E(Sτi

j ), is shown in Figure 1.8(b).
Note that peaks in the expected-similarity function correspond to object hy-
potheses that have a higher degree of similarity with Mi than neighboring
ones. A sample of these hypotheses, referred to as peak hypotheses, is shown
in Figure 1.9. In our work, peak hypotheses are used for predicting an upper
bound on PCR.

1.5.2 Construction of Similarity Histograms

As discussed in the previous section, we describe the object/hypothesis simi-
larity between Mi and Mτi

j by two parameters, (Nτi
j , P τi

j ). For our purpose
of performance prediction, we add two more parameters:

1. The size of Mi, |Mi |.
2. The effective size of Mτi

j , | Mτi
j ∩Rc |, which is the number of features of

Mτi
j that lie inside the clutter region Rc.
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Figure 1.8. An illustration of object/object similarity: (a) model objects Mi and
Mj , (b) corresponding expected-similarity function, E(Sτi

j ), assuming four-neighbor
consistency region, and 2D translation space.

Thus, we encode the information of object/hypothesis similarity using tuple
(| Mi |, | Mτi

j ∩ Rc |, Nτi
j , Nτi

j P τi
j ). Accordingly, the similarity information is

accumulated in 4D histograms 3.
Two similarity histograms are needed in our work, one for storing simi-

larity information corresponding to all erroneous hypotheses, and the other
3 When calculating the effective size of Mτi

j , we have also included features of Mτi
j

that lie outside Rc but are similar to features in Mi.
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Figure 1.9. Three hypotheses corresponding to peaks A, B and C shown in Fig.
1.8(b), assuming four-neighbor consistency region.

for storing information corresponding to peak hypotheses only. They are re-
ferred to as all- and peak-similarity histograms, respectively. The algorithm
used to construct these histograms is outlined in Figure 1.10. It calculates the
similarity between every model object Mi, and all the erroneous hypothe-
ses competing with it. The erroneous hypotheses are selected to satisfy the
following two criteria:

1. Each has at least one feature inside clutter region Rc.
2. For hypotheses that belong to Mi, the relative pose, τi, lies outside Tacc,

defined in Section 1.3.

The similarity information associated with Mi is accumulated in local all- and
peak-similarity histograms, ASHi and PSHi, respectively. These histograms,
for all Mi ∈ MD, are then added to form global similarity histograms, ASH
and PSH, respectively.
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Initialize global similarity histograms ASH and PSH
for each model object Mi ∈ MD do

Initialize local similarity histograms for Mi, ASHi and PSHi

for each model object Mj ∈ MD do
for each τi ∈ T such that | Mτi

j ∩ Rc |> 0 do
if (i �= j) ∨ ¬(τi ∈ Tacc) then

Compute similarity parameters (Nτi
j , P τi

j )
Increment ASHi(|Mi|, |Mτi

j ∩ Rc|, Nτi
j , �Nτi

j P τi
j +1

2�) by 1
if Mτi

j is a peak hypothesis then
Increment PSHi(|Mi|, |Mτi

j ∩ Rc|, Nτi
j , �Nτi

j P τi
j +1

2�) by 1
end if

end if
end for

end for
Add ASHi to ASH
Add PSHi to PSH

end for

Figure 1.10. Similarity-computation algorithm.

1.6 Computation of Performance Bounds

In this section, we derive the PDF of votes for an erroneous hypothesis, and
use this PDF for predicting lower and upper bounds on PCR.

1.6.1 Motivating Example

We start by presenting an example to illustrate the combined effects of data
distortion and object similarity on the vote process. This example, illustrated
in Figure 1.11, assumes the uniform model of similarity between Mi and Mτi

j ,
which is defined in Section 1.5.1. It can be described as follows:

• Prior to being distorted, Mi has five votes, since it consists of five features.
On the other hand, Mτi

j does not have any features of Mi within the
consistency regions of its features. Accordingly, it gets no votes.

• The first distortion step involves occlusion of two features in Mi. Obvi-
ously, this reduces the number of votes for Mi from five to three. At this
point, Mτi

j still does not get any votes. Notice that the number of similar
feature pairs between Mi and Mτi

j decreases from three (which is Nτi
j ;

refer to Section 1.5.1) to two.
• The second step involves randomly perturbing the three unoccluded fea-

tures in Mi within their consistency regions. This keeps the number of
votes for Mi at three. On the other hand, observe that both of the two
unoccluded similar features of Mi move to the regions that overlap with
the consistency regions of their corresponding similar features in Mτi

j . This
contributes two votes to Mτi

j .
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Figure 1.11. An example showing the vote process for object Mi and erroneous
hypothesis Mτi

j , as Mi gets distorted.

• In the final distortion step, four clutter features are randomly added within
clutter region Rc. Two of these features happen to fall within the consis-
tency regions of two new features of Mτi

j . This contributes two extra votes
for Mτi

j , thus bringing its total number of votes to four. The number of
votes for Mi stays the same (recall from Section 1.4 that clutter features
are excluded from falling into consistency regions of occluded ones).

The above example shows how data distortion and model similarity can re-
sult in a recognition failure by reducing the number of votes for the correct
hypothesis, and increasing them for an erroneous one. It also provides us with
the following valuable insight into the distribution of votes for both correct
and incorrect hypotheses, as a function of data distortion:

• The number of votes for Mi, denoted by Vi, is simply the number of
unoccluded features of Mi. That is, for a distorted instance of Mi,
M̂i(Ru(·), O, C, Rc) or simply M̂i, we have

Vi = | Mi | −O. (1.2)
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• The number of votes for Mτi
j , denoted by V τi

j , comes from two different
sources: (1) object Mi, due to structural similarity (second distortion step
in Figure 1.11), and (2) clutter features, due to random coincidence (third
distortion step in Figure 1.11). Thus, V τi

j is a random variable that can
be expressed as follows:

V τi
j = Vs + Vc, (1.3)

where Vs and Vc are random variables that represent similarity and clutter
votes for Mτi

j , respectively.
• The number of similarity votes, Vs, is bounded by the number of similar

feature pairs that remain unoccluded, which we denote by No (obviously,
No ≤ Nτi

j ).

In the above example, it can be seen that Vs = 2, Vc = 2, and No = 2. In the
next section, we use these three random variables to determine the PDF of
V τi

j .

1.6.2 Probability Distribution of Hypothesis Votes

In order to determine the PDF of V τi
j , we need to determine the PDFs of Vs

(number of similarity votes), Vc (number of clutter votes), and No (number
of unoccluded similar features). In the previous section, we have seen that Vs

depends on No. Accordingly, we can express the PDF of Vs as

PVs(vs) =
∑
no

PVs(vs; no)PNo(no), (1.4)

where PVs
(vs; no) = Pr[Vs = vs; No = no]. From (1.3) and (1.4), we can

represent the PDF of V τi
j as

PV
τi

j
(vτi

j ) =
∑
no

PV
τi

j
(vτi

j ; no)PNo(no), (1.5)

where

PV
τi

j
(vτi

j ; no) =
∑
vs

PVs(vs; no)PVc(v
τi
j − vs; no, vs)

and PVc
(vc; no, vs) = Pr[Vc = vc; No = no, Vs = vs]. We estimate the PDF of

No and the conditional PDFs of Vs and Vc based on the uniform models of
data distortion and structural similarity, presented in Sections 1.4 and 1.5.1,
respectively.
• PDF of No: The process of occluding O features in Mi can be viewed as
picking O balls from an urn, which contains Nτi

j white balls and (| Mi | −Nτi
j )

black balls, with no replacement. In our case, the white (black) balls represent
features in Mi that are similar (dissimilar) to features in Mτi

j . Based on the
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uniform occlusion and similarity models, the PDF of No can be described by
the following hypergeometric distribution,

PNo
(no) = HNo

(Nτi
j − no; O, Nτi

j , | Mi | −Nτi
j ), (1.6)

where HX(x; n, a, b) = K(a,x)K(b,n−x)
K(a+b,n) . Note that

no ∈ [max(0, Nτi
j − O), min(Nτi

j , | Mi | −O)].

• Conditional PDF of Vs: It can be easily shown that the conditional PDF of
Vs is represented by the following distribution!binomial binomial distribution:

PVs(vs; no) = BVs(vs; no, P
τi
j ).

This distribution is obtained based on the assumptions of uniform uncertainty
and similarity models. Notice that P τi

j < 1 implies vs ∈ [0, no], while P τi
j = 1

implies vs = no.
• Conditional PDF of Vc: The estimation of the PDF of Vc is considerably
more involved than those of No and Vs. It can be outlined as follows. Let
R′

Vc
⊂ R′

c be the largest region such that a clutter feature falling within it
will contribute a vote for Mτi

j . Region R′
Vc

is the union of the consistency
regions of features in Mτi

j ∩ Rc that do not have any features of Mi within
their consistency regions. They are basically all the features of Mτi

j ∩ Rc

minus those that have similar features of Mi within their consistency regions.
A slight complexity arises from our clutter modeling explained in Section
1.4: features in Mτi

j ∩ Rc that are similar to occluded features in Mi are
effectively associated with “truncated” consistency regions. Figure 1.12 shows
an example of R′

Vc
. Based on the assumption of uniform similarity, we can

show the following:

1. The area of a truncated consistency region is AREA(Ru(·))(1 − P τi
j ).

2. The numbers of potential vote-contributing features with truncated and
full consistency regions are nt = Nτi

j −no , and nf =| Mτi
j ∩Rc | −vs −nt,

respectively.

Splitting the effective clutter region R′
c into two subregions, R′

Vc
and R′

c−R′
Vc

,
we can approximate the conditional PDF of Vc by the following binomial
distribution,

PVc(vc; no, vs) ≈ BVc

(
vc; C,

AREA(R′
Vc

)
AREA(R′

c)

)
, (1.7)

where

AREA(R′
Vc

) = AREA(Ru(·))(nf + (1 − P τi
j )nt), and

AREA(R′
c) = AREA(Rc) − O × AREA(Ru(·)).

The lower bound of vc is 0, while the upper bound is either min(nf + nt, C)
if P τi

j < 1, or min(nf , C) if P τi
j = 14.

4 The area of R′
c is calculated by assuming, for simplicity, that clutter region Rc

totally covers the consistency regions of the features of Mi.
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Figure 1.12. An illustration of the clutter vote region R′
Vc

, assuming the uniform
model of similarity between Mi and Mτi

j .

1.6.3 Lower Bound on PCR

Let Hi be the set of erroneous object/pose hypotheses corresponding to Mi.
It can be defined as

Hi={Mτi
j : Mj ∈ MD and τi ∈ T s.t. |Mτi

j ∩ Rc|> 0} − {Mτi
i : τi ∈ Tacc}.

We can express the probability of misinterpreting a distorted instance of Mi,
M̂i, as any hypothesis in Hi, as

Pr[Hi; M̂i] = Pr[∃ Mτi
j ∈ Hi s.t. V τi

j ≥ Vi]. (1.8)

The probability that Mτi
j “beats” Mi (i.e., Mτi

j reaches or exceeds votes for
Mi) can be obtained from (1.2) and (1.5):

Pr[Mτi
j ; M̂i] =

∑
v

τi
j ≥|Mi|−O

PV
τi

j
(vτi

j ). (1.9)

From (1.8) and (1.9), we obtain the following upper bound on the probability
of recognition failure:

Pr[Hi; M̂i] <
∑

Mτi
j ∈Hi

Pr[Mτi
j ; M̂i].

The above inequality directly leads to the following lower bound on PCR:

Pr[Mi; M̂i] > 1 −
∑

Mτi
j ∈Hi

Pr[Mτi
j ; M̂i]. (1.10)

From the derivation of the vote PDF discussed in the previous section, we
can observe that V τi

j and, in turn, Pr[Mτi
j ; M̂i] depend on only four object-

dependent parameters: size of Mi, effective size of Mτi
j , and the two similarity

parameters (Nτi
j , P τi

j ). Define
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W (a, b, c, d) = Pr[Mτi
j ; M̂i],

such that a =| Mi |, b =| Mτi
j ∩Rc |, c = Nτi

j and d = 
Nτi
j P τi

j + 1
2�. Equation

(1.10) can be rewritten as

Pr[Mi; M̂i] > 1 −
∑

a

∑
b

∑
c

∑
d

ASHi(a, b, c, d)W (a, b, c, d). (1.11)

Taking the average of (1.11) over all model objects in the model set MD, we
obtain the following lower bound on average PCR for MD:

PCR(MD) > 1− 1
|MD|

∑
a

∑
b

∑
c

∑
d

ASH(a, b, c, d)W (a, b, c, d), (1.12)

where

ASH(a, b, c, d) =
∑

i

ASHi(a, b, c, d).

1.6.4 Upper Bound on PCR

In this section, we present three possible upper bounds on PCR. These bounds
differ from each other in the degree of their tightness, and their reliance on
assumptions.

The first upper bound can be obtained by observing that recognition fails
if any hypothesis in Hi beats Mi. The probability that this event takes place
for a given hypothesis, Mτi

j , is Pr[Mτi
j ; M̂i], which is defined in (1.9). The

maximum of these probabilities among all hypotheses in Hi forms a lower
bound on the probability of recognition failure. This directly leads us to the
following upper bound on PCR:

Pr[Mi; M̂i] < 1 − max
τi,j

Pr[Mτi
j ; M̂i], (1.13)

where Mτi
j ∈ Hi. Obviously, we do not expect this bound to be tight, since

it involves only a single erroneous hypothesis.
One possible approach for obtaining a bound that is tighter than the one in

(1.13) is to consider a subset of the hypotheses in Hi, and make the assumption
that the vote PDF’s for these hypotheses are independent. Obviously, the vote-
independence assumption is not reasonable among adjacent hypotheses due
to the overlap of their consistency regions. We propose to consider hypotheses
that correspond to peaks in the expected similarity function (refer to Section
1.5.1). The rationale behind such choice can be outlined as follows:

• Peak hypotheses tend to occur at random locations, which makes the vote-
independence assumption among them more reasonable than when applied
to adjacent ones.
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• Peak hypotheses have a higher degree of similarity with given model ob-
ject Mi, than neighboring ones. Accordingly, we can say that a distorted
instance of Mi is more likely to be misinterpreted as a peak hypotheses
than an off-peak neighbor.

Let Hpi be the set of peak hypotheses associated with model object Mi. That
is,

Hpi = {Mτi
j : Mτi

j ∈ Hi, and τi is a peak in E(Sτi
j )}.

Based on the vote-independence assumption, we can obtain the following up-
per bound on PCR:

Pr[Mi; M̂i] < min
j

∏
τi

(1 − Pr[Mτi
j ; M̂i]), (1.14)

where Mτi
j ∈ Hpi. This upper bound is tighter than the one defined in (1.13),

since it considers a representative subset of model hypotheses that belong to
a single object, instead of just a single hypothesis as in (1.13).

In order to obtain a bound that is tighter than the one in (1.14), we need to
consider hypotheses in Hi that belong to all model objects, not just a single
object as in (1.14). One possible way of achieving this goal is to make the
assumption that the vote PDFs for peak hypotheses that belong to different
model objects are independent. This assumption leads us to the following
upper bound,

Pr[Mi; M̂i] <
∏
j,τi

(1 − Pr[Mτi
j ; M̂i]), (1.15)

where Mτi
j ∈ Hpi. We note that the above assumption can be invalid in some

extreme cases, such as when two of the model objects are identical or very
similar. However, we argue that it is reasonable in many practical scenarios.
For example, let us consider the domain of object recognition using SAR data,
which is the main motivation behind our efforts (see the experimental results
in Section 1.7). It is well known that the features extracted from a SAR image
are extremely sensitive to the geometry of the object shape. Accordingly, even
in the presence of similar objects, we can expect the corresponding feature sets
to be considerably different [10].

In our experiments, we use the tightest bound defined in (1.15). This bound
can be rewritten as

Pr[Mi; M̂i] <
∏
a

∏
b

∏
c

∏
d

(1 − W (a, b, c, d))PSHi(a,b,c,d). (1.16)

Taking the geometric mean of (1.16) for all model objects in MD, we obtain
an estimate of the upper bound of PCR corresponding to MD,

PCR(MD) <
∏
a

∏
b

∏
c

∏
d

(1 − W (a, b, c, d))
P SH(a,b,c,d)

|MD| , (1.17)
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where

PSH(a, b, c, d) =
∑

i

PSHi(a, b, c, d).

1.7 Experimental Validation

In this section, we validate the proposed prediction method by comparing
predicted bounds on performance with actual ones determined empirically.

1.7.1 Recognition Task

The recognition task that we consider in this work involves recognition of
objects using SAR data [10]. We use real data from the MSTAR public domain
[28]. The model set consists of a number of objects, which are military targets.
Each object is represented by a number of SAR views that sample its signature
at several azimuth angles and a specific depression angle. We consider each
view as an independent 2D “object.” Each model or data view is represented
by locations of scattering centers, which are image peaks. These scattering
centers correspond to eight-neighbor peaks. The features of each object are
the 30 peaks that are strongest in magnitude of radar returns. Recognition
involves comparing peaks extracted from data and model views assuming that
the space of applicable transformations, T , is discrete 2D translations in the
image plane [5, 10].

1.7.2 Model and Test Sets

Our model set consists of three objects, which are T72, BMP2, and BTR70.
The numbers of views for these objects are 231, 233, and 233, respectively,
and so the total number of views is 697. All of these views are obtained at
depression angle 17◦. Figure 1.13 shows a representative sample of a single
view for each object, along with associated scattering centers.

The test data consists of seven sets, T D1 through T D7. They are classi-
fied into two groups depending on whether the data distortion in the set is
synthetic or real.

1. Synthetic-Distortion Group: This group consists of sets T D1 through
T D5. It is obtained by synthetically distorting the model set, following the
distortion process outlined in Section 1.4. We have added the constraint
that no features are eight-neighbors, in order to simulate the process of
peak extraction. The distortion in each set is characterized by specific
consistency and clutter regions, and a number of occlusion/clutter (O/C)
values. Notice that the numbers of occluded and clutter features are always
the same in our case, since we are considering a fixed number of features
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(a) T72 (b) BMP2 (c) BTR70

Figure 1.13. Examples of SAR images and associated scattering centers at depres-
sion angle 17◦, and azimuth angle 132◦.

for both model and data views. The test subset corresponding to a specific
O/C value consists of four randomly generated distorted instances for each
model view. Accordingly, the size of each test subset is 4 | MD |, and the
total size of the test set is 4noc | MD |, where noc is the number of O/C
values considered in the set. The upper section of Table 1.2 describes the
five synthetically distorted test sets. Note that the fourth column in this
table consists of two subcolumns: the first one describes the basic shape
of the clutter region, while the second describes the scale of that shape. In
particular, the clutter region is obtained by scaling the basic clutter region
by some factor. Furthermore, notice that the consistency region Ru(·) for
test set T D1 is the zero-neighbor region, which implies the absence of any
positional uncertainty.

2. Real-Distortion Group: This group consists of two sets, T D6 and T D7.
These sets correspond to variants of the model set involving real distor-
tion. The first set, T D6, is obtained by changing the configurations of the
model objects [5]. Examples of changing the object configuration are us-
ing different flash lights, changing numbers of barrels, etc. The second set,
T D7, is obtained by changing the depression angle from 17◦ to 15◦. Note
that due to the nature of the SAR imaging process, such a small angle
change can result in a significant variation in the object signature [28].
For both sets, the distortion parameters are determined as follows. The
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Table 1.2. Description of the test sets used in the experiments.

Set Distortion Consistency Clutter Region Occluded/ Size
Region Shape Factor Clutter Features

T D1 synthetic 0-neighbor convex hull 1 18, 19, · · · , 27 4 × 697 × 10
T D2 synthetic 4-neighbor convex hull 1 9, 10, · · · , 20 4 × 697 × 12
T D3 synthetic 8-neighbor convex hull 1 0, 1, · · · , 15 4 × 697 × 16
T D4 synthetic 4-neighbor convex hull 2 9, 10, · · · , 24 4 × 697 × 16
T D5 synthetic 4-neighbor convex hull 3 9, 10, · · · , 24 4 × 697 × 16
T D6 ∆ config. 4-neighbor convex hull 1 estimated 464
T D7 ∆ dep. angle 4-neighbor convex hull 1 estimated 581

consistency and clutter regions, Ru(·) and Rc, are empirically chosen to
be four-neighbor region and convex hull of view features, respectively. The
O/C value is estimated for each test view through finding the best match-
ing model view within a difference of ±3◦ azimuth angles, and counting
the number of unmatched features. In the case of the absence of a model
view within ±3◦ azimuth angles, the test view is matched with the avail-
able model one that is closest in azimuth. The lower section of Table 1.2
summarizes the two real sets.

Note that our models are defined from real data that may in fact contain
some distortions. Thus, our notion of occlusion and clutter is relative, not
absolute. That is, a spurious feature in the model view that does not match any
feature in the test view is considered as a true model feature that is occluded.
Furthermore, a true feature in the test view that is missing in the model
view is considered as a clutter feature. Obviously, recognition performance
would be improved through learning the true model features, or by giving a
variety of weights to the model features depending on the probability that
they correspond to true features. This topic is beyond the scope of this work.

1.7.3 Results

Our selected performance measure is PCR as a function of data distortion, in
particular, the occlusion/clutter rate (O/C). As mentioned, the consistency
and clutter regions are assumed to be fixed for each test set. The empirical
performance is determined using an object recognition system, which uses
the vote-based criterion defined in (1.1). The recognition system examines all
the relevant translations between a given test view, and each model one. The
translations examined are defined by the bounding box on the translations
that lead to at least a single match between a test feature and a model one.
Accordingly, the performance determined by the recognition system is optimal,
assuming the given vote-based criterion. The predicted bounds are obtained as
described in Section 1.6 with two minor modifications. The first one involves
the clutter region. Notice that in our experiments, the exact shape of the
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clutter region is not fixed, but differs from one view to another. Accordingly,
AREA(Rc) is replaced by the average of clutter-region areas for all model
views. Recall that AREA(Rc) is used when calculating the vote PDF of an
erroneous hypothesis (refer to Section 1.6.2). The second modification involves
the conditional PDF of clutter votes, defined in (1.7). Notice that in our
recognition task, image peaks cannot be eight-neighbors. This fact needs to
be considered in the estimation of the clutter vote PDF, in order to obtain
more accurate performance bounds. An approximate method for estimating
such a PDF is presented in the Appendix.

We first analyze the results involving the synthetic-distortion test group.
Figures 1.14 and 1.15 show actual and predicted performance plots for the
test sets T D1 through T D5. From these figures, we observe the following:

• In all cases, our method consistently succeeds in predicting reasonably
tight bounds on actual performance.

• The predicted lower bounds consistently predict the actual breakpoint in
performance with high accuracy. In all cases, the breakpoint in the lower-
bound plot either coincides with the actual one, or occurs very slightly
before it.

• The prediction method confirms the intuitive observation that perfor-
mance degrades when the size of the consistency region increases. This can
be observed by comparing Figures 1.14(a)–(c). The method also confirms
the intuitive observation that performance improves when the density of
clutter features decreases, which takes place when the size of the clutter re-
gion increases. Again, this can be observed by comparing Figures 1.14(b),
1.15(a), and 1.15(b).

• The predicted lower bound is consistently very close to the actual PCR
plot along the knee section, defined as the section between the first two
breakpoints in the plot. In all cases, the difference between the lower bound
and corresponding PCR in the knee section is less than 3%. Beyond the
knee section, the lower bound diverges. This observation can be explained
as follows. Let Hi(D) ⊂ Hi be set of erroneous hypotheses that simulta-
neously beat true hypothesis at distortion level D, where D = O = C.
At relatively low levels of distortion, the probability that more than one
erroneous hypotheses will simultaneously beat the true one is negligible
compared to that of only a single erroneous hypothesis 5. Accordingly, in
case of recognition failure at low distortion levels, Hi(D) has only a single
element in most cases. This makes the lower bound defined in (1.10) an
estimate of the actual performance. However, as distortion increases, the
above assertion ceases to be valid, which makes the lower bound in (1.10)
a strict one.

• The predicted upper bound becomes less tight beyond the breakpoint of
performance, but then becomes very tight towards the end of the plot.
This can be explained as follows. It is easy to see that the size of Hi(D) is

5 This is assuming we do not have identical or very similar model objects.
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Figure 1.14. Actual and predicted PCR plots for synthetic-distortion sets involving
different consistency regions: (a) T D1, (b) T D2, (c) T D3.
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Figure 1.15. Actual and predicted PCR plots for synthetic-distortion sets involving
different clutter regions: (a) T D4, (b) T D5.

proportional to D. At low distortion levels, the size of Hi(D) is small, and
the probability that it has no peak hypothesis is generally high. Accord-
ingly, the upper bound defined in (1.15) becomes a less tight one (recall
that this upper bound represents the probability that no peak hypothesis
beats the true one). Note that we can quantitatively measure the tightness
of the upper bound using the ratio

F =
1 − predicted upper bound

1 − actual PCR
,

where F ∈ [0, 1]. As distortion increases, the size of Hi(D) increases as well,
and the probability it has no peak hypothesis decreases. This increases the
tightness of the upper bound, until it eventually coincides with the actual
PCR, at which case F becomes equal to one.
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We now turn to analyzing the real-distortion group. Actual and pre-
dicted PCR plots for real-distortion test sets T D6 and T D7 are shown in
Figures 1.16(a) and 1.16(b), respectively. These figures show that our pre-
diction method succeeds in predicting reasonably accurate bounds on actual
performance. For example, the breakpoint in performance is predicted accu-
rately in both cases. However, we also observe that the predicted bounds are
over-optimistic in the knee section of the plot. The reason is obviously the
existence of some differences between the actual distortion models and the
assumed uniform ones. One of the important differences is that the assumed
uniform occlusion model does not account for the spatial correlation among
occluded/unoccluded features.
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Figure 1.16. Actual and predicted PCR plots for real-distortion group: (a) T D6,
(b) T D7.
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A goal of our research is to develop statistical techniques for learning uncer-
tainty, occlusion, and clutter models. The topic of learning distortion models
has received some attention in the literature, particularly in learning distribu-
tions of feature positional uncertainty [29]. We present here an initial method
for learning the statistical model of occlusion, for the purpose of performance
prediction. A possible direct approach is to learn the spatially correlating oc-
clusion model from training data (e.g., using Markov random fields [26]), and
then use it to determine the prediction bounds. In particular, the occlusion
model can be used to determine the PDF of the number of unoccluded similar
features (PDF of No), which is subsequently used to determine the PDF of
votes for an erroneous hypothesis (see Section 1.6.2). The difficulty with this
approach is that it involves not only a spatially correlating occlusion model,
but also a spatially correlating similarity model, one that considers the spatial
correlation among similar/dissimilar feature pairs. Fortunately, in the context
of our problem, there is a significantly simpler approach: Instead of learning
the spatially correlating occlusion and similarity models, and then estimating
their combined effect on the PDF of No, we directly learn the PDF of No.
The learning process can be outlined as follows:

1. We use half of the test set for the learning process (odd-numbered views).
2. For each selected test view, M̂i, we search for the best matching model

view, Mi, as described earlier when estimating the distortion rate for a
test view (see Section 1.7.2). From this match, we eliminate unmatched
features of Mi. The resulting view, Mi, corresponds to model view Mi

after occlusion, but without either uncertainty or clutter.
3. For each erroneous hypothesis corresponding to Mi, Mτi

j ∈ Hi, we calcu-
late the number of similar feature pairs with each of Mi and Mi, denoted
by Nτi

j and N̄τi
j , respectively.

4. For each tuple (| Mi |, O =| Mi | − | Mi |, Nτi
j ), we histogram corre-

sponding values of N̄τi
j to estimate the conditional PDF of No.

We have replaced the PDF of No defined in (1.6) by the learned PDF. The
resulting new predicted bounds are shown in Figures 1.17(a) and 1.17(b) for
test sets T D6 and T D7, respectively. Comparing these figures to the corre-
sponding ones in Figure 1.16, we observe that the predicted bounds obtained
using the learned PDF of No are considerably more accurate than the ones
obtained by assuming the uniform distortion models. In particular, the extent
of over-optimism between actual and predicted plots almost disappears for set
T D6, and decreases by about 65% for set T D7. This is assuming that the ex-
tent of over-optimism is measured by the area between the actual plot and the
predicted lower-bound plot at the knee section. More accurate prediction can
be obtained through comprehensive learning of the PDFs of all the distortion
parameters involved.
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Figure 1.17. Actual and predicted PCR plots for real-distortion group using learned
PDF of No: (a) T D6, (b) T D7.

1.8 Conclusions

Object recognition performance is typically evaluated empirically. A major
limitation of empirical evaluation is that it does not give us an insight into
the recognition process. Such an insight is fundamental for transforming the
field of object recognition from an art to a science. Most efforts for formal anal-
ysis of object recognition performance focus on the problem of object/clutter
discrimination. This work extends those efforts by also considering the prob-
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lem of object/object discrimination. An integrated approach is presented for
predicting lower and upper bounds on recognition performance. Such an ap-
proach simultaneously considers data distortion factors such as uncertainty,
occlusion, and clutter, in addition to model similarity. This is in contrast to
the other few object/object discrimination approaches, which consider only a
subset of these factors. The method is validated in the context of a recognition
task involving real SAR data, and point features for matching. Validation is
done by comparing predicted lower and upper PCR bounds with actual PCR
plots determined experimentally. The selected test sets involve both synthetic
and real distortion. In all cases, the results demonstrate that the prediction
method consistently succeeds in predicting reasonably tight bounds on actual
performance. The predicted bounds, however, are slightly over-optimistic in
the case of test sets involving real distortion. More accurate bounds can be ob-
tained through comprehensive learning of all the distortion models involved in
the recognition process. As an initial step towards achieving this goal, we have
presented a method for learning the statistical distribution of the parameter
that encodes combined effect of occlusion and similarity on performance. The
impact of using such a learned distribution on the accuracy of the predicted
bounds has been demonstrated. To the best of our knowledge, this work is
the first that validates a prediction method for object recognition using real
data.

We finally discuss possible ways to extend the work presented here. The
recognition task considered in this work involves discretized 2D point features
for both data and model objects, and a 2D translation space. The proposed
method, however, can be extended in a number of ways. We explore some of
them below:

• Consideration of more general data/model transformations (e.g., rigid,
affine) is straightforward. It would mainly involve extending the set of
erroneous hypotheses for a model object, to reflect the extra degrees of
freedom (see Sect. 1.6.3).

• Replacement of discretized feature sets by non discretized sets is a more
involved process. This is because, in such a case, the erroneous-hypothesis
set for a model object would be of infinite size. One possible approach
is sampling the erroneous hypotheses in the transformation space, and
then “dilating” the consistency regions associated with model features to
account for non-sampled hypotheses (e.g., [21]). We note that consistency-
region dilation would be needed only when computing lower bounds on
performance.

• It is also possible to incorporate feature attributes [5], and/or increase
dimensionality of feature locations. Both cases would mainly involve in-
creasing the dimensionality of consistency and clutter regions to be equal
to the sum of location dimensionality and number of attributes. Otherwise,
the method remains basically the same.
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• Another interesting possibility is to describe the positional uncertainty by
a Gaussian distribution, instead of a uniform one. This would involve re-
placing the uniform vote-based criterion by a weighted one, which depends
on the distance between corresponding data and model features, as well
as the standard deviation of the Gaussian distribution [18]. This would
require making modifications to both the measure of object/hypothesis
similarity, and the method used to calculate the vote distributions for both
true and erroneous hypotheses. The prediction method, however, remains
conceptually the same.

• The performance theory presented here can be integrated with adaptive
algorithms to optimize object recognition performance in practical scenar-
ios (e.g., with respect to a desired trade-off between probability of false
alarm and probability of correct recognition [30]).

In conclusion, the work presented here is believed to lay a theoreti-
cal/conceptual foundation that is important for developing a general theory
for performance prediction of object recognition.

Appendix

We present an approximate method for estimating the conditional PDF of
clutter votes Vc, considering the constraint that no two features can be eight
neighbors (imposed by the feature extraction process). We can represent the
feature-adjacency constraint by a separation region, Rs(·). In our case, Rs(·) is
a 3×3 window centered at the feature’s location. The method can be outlined
as follows:

• It can be seen that the feature-adjacency constraint reduces effective clut-
ter and clutter-vote regions, R′

c and R′
Vc

, to smaller ones, R′′
c and R′′

Vc
,

respectively (see Figure 1.18). We can express the area of R′′
c as

AREA(R′′
c ) ≈ AREA(R′

c) − AREA(Rs(·))(| Mi | −O).

For clutter-vote region R′′
Vc

, let us first consider features in Mi that are
similar to those in Mτi

j , but are lying outside the overlapping regions (e.g.,
upper right feature of Mi in Figure 1.18). Generally, the separation region
corresponding to one of these features partially covers the consistency re-
gion corresponding to the similar feature in Mτi

j . We can approximate the
area of the covered section, denoted by Ed, as follows. (1) Both the consis-
tency and separation regions are modeled as squares, having the same areas
as their original respective regions. (2) The relationship between square
consistency regions corresponding to similar feature pairs is modeled by
movement of one square with respect to the other parallel to one of the
edges, until the area of the overlapping region is the same as the original
one (which corresponds to feature/feature similarity). (3) Assuming the
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square modeling of consistency regions, we can easily estimate expected
location of a feature of Mi, assuming that it is outside the overlapping
region. Given the expected location, we can easily estimate the area of the
covered section, Ed. We can then estimate the area of R′′

Vc
as

AREA(R′′
Vc

) = AREA(R′
Vc

) − (no − vs)Ed.

Figure 1.18. An illustration of clutter vote region R′′
Vc

, in the presence of separation
regions, shown as squares.

• The above discussion, as well as that in Section 1.6.2, implies that features
of Mτi

j that can result in votes for Mτi
j are effectively associated with

consistency regions of various sizes. In order to simplify the calculations,
we assume that we have an “effective” number of these features, ne, such
that each feature is associated with a full consistency region. It can be
easily shown that ne = 
AREA(R′′

Vc
)/AREA(Ru(·))+0.5�. In such a case,

the effective area of the consistency region, Eu, is AREA(R′′
Vc

)/ne, which
is approximately the same as AREA(Ru(·)).

• Next, we need to estimate the average effective area of a separation region,
Es. This area is simply the ratio between the area corresponding to the
union of the separation regions of the C clutter features, to C. If the clutter
features are spread apart from each other, then Es is close to AREA(Rs(·)).
However, if their density is high, which is typical in our case, then there
can be significant overlap between their separation regions, thus making
Es considerably smaller than AREA(Rs(·)). In our work, we have

Es ≈ min(AREA(Rs(·)),AREA(R′′
c )/C). (1.18)

• Now, we are finally at a position to approximate the conditional PDF of
Vc:

PVc(vc; no, vs)

≈ K(C, vc) ×
L(AREA(R′′

Vc
), Eu, vc)L(AREA(R′′

c − R′′
Vc

) − vc(max(0, Es − Eu)), Es, C − vc)
L(AREA(R′′

c ), Es, C)
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where L(X,Y, n) =
∏n−1

i=0 (X − iY ).
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Summary. The focus of this chapter is on methods for improving the performance
of a model-based system for recognizing vehicles in synthetic aperture radar (SAR)
imagery under the extended operating conditions of object articulation, occlusion,
and configuration variants. The fundamental approach uses recognition models based
on quasi-invariant local features, radar scattering center locations, and magnitudes.
Three basic extensions to this approach are discussed: (1) incorporation of additional
features; (2) exploitation of a priori knowledge of object similarity represented and
stored in the model-base; and (3) integration of multiple recognizers at different look
angles. Extensive experimental recognition results are presented in terms of receiver
operating characteristic (ROC) curves to show the effects of these extensions on
SAR recognition performance for real vehicle targets with articulation, configuration
variants, and occlusion.

2.1 Introduction

In this chapter we are concerned with methods for improving the recognition of
vehicles in Synthetic Aperture Radar (SAR) imagery. The recognition systems
start with real SAR chips (at one foot resolution) of actual military vehicles
from the MSTAR public data [1] and end with the identification of a specific
vehicle type (e.g., a T72 tank). Several major challenges for identifying the
vehicles are the presence of significant external configuration variants (fuel
barrels, searchlights, etc.), articulated configurations (such as a tank with its
turret rotated), and partial occlusion. The detection theory [2, 3], pattern
recognition [4, 5, 6], and neural network [7] approaches to SAR recognition all
tend to use global features that are optimized for standard, non-articulated,
non-occluded configurations. Approaches that rely on global features are not
appropriate for recognizing occluded or articulated objects because occlusion
and articulation change global features like the object outline and major axis
[8]. Our previous work [9, 10, 11, 12], relied on local features to successfully
recognize articulated and highly occluded objects. SAR recognition results for
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our basic approach are compared (in [9]) to other different approaches using
real SAR images from the MSTAR public data.

In our research on SAR automatic target recognition (ATR), we initially
started using invariant locations of SAR scattering centers as features [12] and
later developed our basic recognition approach based on using quasi-invariant
locations and magnitudes of the scattering centers [9, 10, 11]. This followed
the traditional approach to improving recognition performance by finding ad-
ditional features that can help to distinguish between the objects. This is the
first method of improvement discussed in this chapter. The second method
of exploiting model similarity was inspired by the research on predicting the
performance of recognition systems by Boshra and Bhanu [13] that introduced
the idea that recognition performance depends on the distortion in the test
data and the inherent similarity of the object models. Related to the third
method for improving recognition performance, we had previously shown that
a significant number of SAR scattering center locations do not typically per-
sist over a few degrees of rotation [10]. However, this had been viewed as
a problem for modeling, rather than a potential opportunity for independent
observations at different look angles. In this chapter, we integrate results from
multiple look angles to improve recognition performance.

This chapter discusses three basic approaches to improve the performance
of an SAR recognition system:

1. Incorporation of additional features.
2. Exploitation of a priori knowledge of object similarity.
3. Integration of multiple recognizers at different look angles.

The next section discusses SAR target characteristics; Section 2.3 gives
a description of the basic SAR recognition system; Section 2.4 introduces
the additional feature of peak shape factor and shows performance improve-
ments for additional features; Section 2.5 describes techniques to measure
and utilize model similarity to improve recognition performance; Section 2.6
demonstrates the independence of multiple look angle SAR recognition and
the results for performance improvements; and the final Section 2.7 provides
the conclusions of the chapter.

2.2 SAR Target Characteristics

The typical detailed edge and straight line features of man-made objects in
the visual world do not have good counterparts in SAR images for subcom-
ponents of vehicle-sized objects at one-foot resolution. However, there is a
wealth of peaks corresponding to scattering centers. The relative locations
of SAR scattering centers, determined from local peaks in the radar return,
are related to the aspect and physical geometry of the object, independent
of translation and serve as distinguishing features. Target regions-of-interest
(ROI) are found in the MSTAR SAR chips by reducing speckle noise using
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the Crimmins algorithm (see [14]), thresholding at the mean plus two stan-
dard deviations, dilating to fill small gaps among regions, eroding to have one
large ROI and little regions, discarding the small regions with a size filter and
dilating to expand the extracted ROI. The scattering centers are extracted
from the SAR magnitude data (within the boundary contour of the ROI) by
finding local eight-neighbor maxima. The parameters used in extracting ROIs
are held constant for all the results reported.

Objects from the MSTAR public data used in this research include: BMP2
armored personnel carriers (APCs), a BTR70 APC, T72 tanks, a ZSU23/4
anti-aircraft gun, and a BRDM2 APC. Photo images of the MSTAR articu-
lated objects used in this paper, T72 tank serial number (#) a64 and ZSU
23/4 anti-aircraft gun #d08, are shown in Figures 2.1 and 2.2. Example SAR
images and the ROI, with the locations of the scattering centers superimposed
are shown in Figure 2.3 for baseline and articulated versions of the T72 and
ZSU (at 30◦ radar depression angle, 66◦ target azimuth).

(a) turret straight. (b) turret articulated.

Figure 2.1. T72 tank #a64.

(a) turret straight. (b) turret articulated.

Figure 2.2. ZSU 23/4 anti-aircraft gun #d08.
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(a) T72: image. (b) ROI. (c) articulated image. (d) articulated ROI.

(a) ZSU: image. (b) ROI. (c) articulated image. (d) articulated ROI.

Figure 2.3. MSTAR SAR images and ROIs (with peaks) for T72 tank #a64 and
ZSU 23/4 #d08 at 66◦ azimuth.

2.2.1 Azimuthal Variance of Scatterer Locations

The typical rigid body rotational transformations for viewing objects in the
visual world do not apply much for the specular radar reflections of SAR im-
ages. This is because a significant number of features do not typically persist
over a few degrees of rotation. Since the radar depression angle is generally
known, the significant unknown target rotation is (360◦) in azimuth. Azimuth
persistence or invariance can be expressed in terms of the percentage of scat-
tering center locations that are unchanged over a certain span of azimuth
angles. It can be measured (for some base azimuth θo) by rotating the pixel
locations of the scattering centers from an image at azimuth θo by an an-
gle ∆θ and comparing the resulting range and cross-range locations with the
scatterer locations from an image of the same object at azimuth θ0 + ∆θ.
More precisely, because the images are in the radar slant plane, we actually
project from the slant plane to the ground plane, rotate in the ground plane,
and project back to the slant plane. Since the objects in the chips are not
registered, we calculate the azimuth invariance as the maximum number of
corresponding scattering centers (whose locations match within a given toler-
ance) for the optimum integer pixel translation. This method of registration
by finding the translation that yields the maximum number of correspon-
dences has the limitation that for very small or no actual invariance it may
find some false correspondences and report a slightly higher invariance than in
fact exists. To determine scattering center locations that persist over a span of
angles, there is an additional constraint that for a matching scattering center



Chapter 2 Improving an SAR Recognition System 43

to “persist” at the kth span ∆θk, it must have been a persistent scattering
center at all smaller spans ∆θj , where 0 ≤ j < k. Averaging the results of
these persistent scattering center locations over 360 base azimuths gives the
mean azimuth invariance of the object.

Figure 2.4 shows an example of the mean azimuth invariance (for the
40 strongest scatterers) as a function of azimuth angle span using T72 tank
#132, with various definitions of persistence. In the “exact match” cases the
center of the rotated scatterer pixel from the image at θo azimuth is within
the pixel boundaries of a corresponding scatterer in the image at θ0 + ∆θ.
In the “within 1 pixel” cases, the scatterer location is allowed to move into
one of the 8 adjacent pixel locations. Note that for a 1◦ azimuth span, while
only 20% of the scatterer locations are invariant for an “exact match,” 65%
of the scatterer locations are invariant “within 1 pixel.” The cases labeled
“persists” in Figure 2.4 enforce the constraint that the scatterer exist for the
entire span of angles and very few scatterers continuously persist for even 5◦.
In the upper two cases (not labeled “persists”) scintillation is allowed and the
location invariance declines slowly with azimuth span. The “within 1 pixel”
results (that allow scintillation) are consistent with the one-foot ISAR results
of Dudgeon et al. [15], whose definition of persistence allowed scintillation.
Because of the higher scatterer location invariance with 1◦ azimuth span,
in our research we use azimuth models at 1◦ increments for each target, in
contrast to others who have used 5◦ [16], 10◦ [17], and 12 models covering
specific azimuth ranges [6].
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Figure 2.4. Scatterer location persistence, T72 #132.

The fact that the SAR scatterer locations do not persist over a span of even
a few degrees, demonstrated in Figure 2.4, strongly indicates that observations
at different azimuth angles are independent. Thus, what had previously been
viewed as a “problem” for modeling, now presents a significant opportunity
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to improve recognition performance by integrating the results of SAR obser-
vations at multiple look angles. This is the basis for the approach which will
be discussed later in Section 2.6.

2.2.2 Scatterer Location and Magnitude Invariance

Many of the scatterer locations and magnitudes are invariant to target con-
ditions such as articulation or configuration variants. Because the object and
ROI are not registered, we express the scattering center location invariance
with respect to articulation or configuration differences as the maximum num-
ber of corresponding scattering centers (whose locations match within a stated
tolerance) for the optimum integer pixel translation.

Figure 2.5 shows the location invariance of the strongest 40 scattering
centers with articulation for T72 tank #a64 and also for ZSU 23/4 anti-aircraft
gun #d08 (at a 30◦ depression angle) as a function of the hull azimuth. The
combined average invariance for both articulated vehicles is 16.5% for an exact
match of scattering centers and 56.5% for a location match within one pixel
(3x3 neighborhood) tolerance. (Note that not all 360 degrees are present in
the MSTAR data, so the missing azimuth angles are ignored in this research.)
Similarly, Figure 2.6 shows the percent of the strongest 40 scattering center
locations that are invariant for two example configuration variants, T72 #812
vs. #132 and BMP2 vehicle #9563 vs. #C21, at a 15◦ depression angle.
(While the MSTAR data has 11 configurations of the T72, it only has three
configurations of the BMP2, so to avoid biasing the experiments toward the
T72, we use only three of the T72 configurations.) The combined average
invariance for configuration variants of the T72 (#812 and #s7 vs. #132)
and BMP2 (#9563 and #9566 vs. #c21) is 15.3% for an exact match of
scatterer locations and 57.15% for a location match within one pixel. Since
less than 20% of the SAR scattering center locations exactly match for object
articulation and configuration variants, while over 50% of these locations are
quasi-invariant within a 3∗3 pixel tolerance, in our research we accommodate
this 3∗3 tolerance for scattering center locations in the recognition system.

Because of the very large dynamic range for scatterer magnitudes we use
a scaled scatterer amplitude (S), expressed as a radar cross-section in square
meters, given by S = 100 + 10 log10(i2 + q2), where i and q are the compo-
nents of the complex radar return, and we define a percent amplitude change
(Ajk) as: Ajk = 100(Sj − Sk)/Sj . Note that this form allows a larger vari-
ation for the stronger signal returns. Figure 2.7 shows the probability mass
functions (PMFs) for percent amplitude change for the strongest 40 articu-
lated vs. nonarticulated scattering centers of T72 tank #a64 and ZSU 23/4
gun #d08. Curves are shown both for the cases where the scattering center
locations correspond within one pixel tolerance and for all the combinations
of scatterers whose locations do not match. Similarly, Figure 2.8 shows the
PMFs for percent amplitude change for the strongest 40 scattering centers
with configuration variants, T72 #812 vs. #132 and BMP2 #9563 vs. #C21,
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(a)T72 tank. (b)ZSU 23/4.

Figure 2.5. Scatterer location invariance with articulation.
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Figure 2.6. Scatterer location invariance with configuration.

at a 15◦ depression angle. If we define scatterer magnitude invariance as the
number of scatterers with corresponding locations whose magnitudes match
(within a stated percent amplitude change tolerance), then the overall aver-
age scatterer magnitude invariance (within ± one pixel location and ± nine
percent amplitude change) is 50.8 percent for the articulation cases and 51.7
percent for the configuration variant cases.

2.2.3 Target Occlusion

There is no real SAR data with occluded objects available to the general
public (limited data on vehicles in revetments [18] and partially hidden be-
hind walls [19] has been reported to exist, but it has not yet been released for
unrestricted use). In addition, there is no standard, accepted method for char-
acterizing or simulating occluded targets. Typically occlusion occurs when a
tank backs up into a tree line, for example, so that the back end is covered
by trees and only the front portion of the tank is visible to the radar. Thus,
the “bright target” becomes a much smaller sized object to the recognition
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Figure 2.7. Scatterer magnitude invariance with articulation.
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Figure 2.8. Scatterer magnitude invariance with configuration.

system. In addition, the tree tops can produce “bright” peaks that are similar
to the strength of target peaks at many azimuths.

The occluded test data in our research is simulated by starting with a given
number of the strongest scattering centers and then removing the appropriate
number of scattering centers encountered in order, starting in one of four
perpendicular directions di (where d1 and d3 are the cross-range directions,
along and opposite the flight path, respectively, and d2 and d4 are the up range
and down range directions). Then the same number of scattering centers (with
random magnitudes) are added back at random locations within the original
bounding box of the chip. This keeps the number of scatterers constant and
acts as a surrogate for some potential occluding object. Our approach, using
simulated occlusion provides an enormous amount of data with varying known
amounts of occlusion for carefully controlled experiments.
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2.3 Basic SAR Recognition System

The basic SAR recognition algorithm is an off-line model construction process
and a similar on-line recognition process. The approach is designed for SAR
and is specifically intended to accommodate recognition of occluded and ar-
ticulated objects. Standard nonarticulated models of the objects are used to
recognize these same objects in nonstandard, articulated, and occluded con-
figurations. The models are a look-up table and the recognition process is an
efficient search for positive evidence, using relative locations of the scattering
centers in the test image to access the look-up table and generate votes for
the appropriate object (and azimuth pose).

Establishing an appropriate local coordinate reference frame is critical to
reliably identifying objects (based on locations of features) in SAR images of
articulated and occluded objects. These problems require the use of a local
coordinate system; global coordinates and global constraints do not work, as il-
lustrated in Figure 2.3, where the center of mass and the principal axes change
with articulation. In an SAR image the radar range and cross-range directions
are known and choosing any local reference point, such as a scattering center
location, establishes a reference coordinate system. The relative distance and
direction of the other scattering centers can be expressed in radar range and
cross-range coordinates, and naturally tessellated into integer buckets that
correspond to the radar range/cross-range bins. The scale is determined by
the bin size, which is a function of the frequency of the radar (e.g., X-band for
the one foot resolution used in this research). The recognition system takes
advantage of this natural system for SAR, where a single basis point performs
the translational transformation and fixes the coordinate system to a “local”
origin.

The model construction algorithm for the recognition system is outlined
in Figure 2.9 (where the “origin” is the stronger of a pair of scatterers and a
“point” is another weaker scatterer). Because of the specular radar reflections
in SAR images, a significant number of features do not typically persist over
a few degrees of rotation (as shown in Figure 2.4). Consequently, we model
each object at 1◦ azimuth increments. The relative locations and magnitudes
of the N strongest SAR scattering centers are used as characteristic features
(where N , the number of scattering centers used, is a design parameter). Any
local reference point, such as a scattering center location, could be chosen as a
basis point (“origin”) to establish a reference coordinate system for building a
model of an object at a specific azimuth angle pose. For ideal data, picking the
location of the strongest scattering center as the origin is sufficient. However,
for potentially corrupted data where any scattering center could be spurious
or missing (due to the effects of noise, target articulation, occlusion, non-
standard target configurations, etc.), we use all N strongest scattering centers
in turn as origins to ensure that a valid origin is obtained. Thus, to handle
occlusion and articulation, the size of the look-up table models (and also the
number of relative distances that are considered in the test image during



48 Bir Bhanu and Grinnell Jones III

recognition) are increased from N to N(N − 1)/2. Using a technique like
geometric hashing [20], the models are constructed using the relative positions
of the scattering centers in the range (R) and cross-range (C) directions as the
initial indices to a look-up table of labels that give the associated target type,
target pose, “origin” range and cross-range positions, and the magnitudes (S)
of the two scatterers. Since the relative distances are not unique, there can be
several of these labels (with different target, pose, etc., values) at each lookup
table entry.

1. For each model Object do 2
2. For each model Azimuth do 3, 4, 5

3. Obtain the location (R, C) and magnitude (S) of the strongest N scatterers.
4. Order (R, C, S) triples by descending S.
5. For each origin O from 1 to N do 6

6. For each point P from O+1 to N do 7, 8
7. dR = RP − RO; dC = CP − CO.
8. At look-up table location dR, dC append to list entry with: Object,

Azimuth, RO, CO,SO, SP .

Figure 2.9. Model construction algorithm.

The recognition algorithm is outlined in Figure 2.10. The recognition pro-
cess uses the relative locations of the N strongest scattering centers in the
test image to access the look-up table and generate votes for the appropri-
ate object, azimuth, range, and cross-range translation. (In contrast to many
model-based approaches to recognition [21], we are not “searching” all the
models.) Further comparison of each test data pair of scatterers with the
model look-up table result(s) provides information on the magnitude changes
(between the data and the model) for the two scatterers. Limits on allowable
values for translations and magnitude changes are used as constraints to re-
duce the number of false matches. The number of scattering centers used and
the various constraint limits are design parameters that are optimized, based
on experiments, to produce the best recognition results. (Another approach
to optimizing these tuning parameters, based on reinforcement learning is
presented in [22].) Given the MSTAR targets are “centered” in the chips, a
±5 pixel limit on allowable translations is imposed for computational effi-
ciency. The experimentally determined optimum limit on the allowable per-
cent difference in the magnitudes of the data and model scattering centers
was ±9%, which is consistent with the measured probability mass functions
of scatterer magnitude invariance with target configuration variants and ar-
ticulations (previously shown in Figures 2.8 and 2.7). To accommodate some
uncertainty in the scattering center locations, the eight-neighbors of the nom-
inal range and cross-range relative location are also probed in the look-up
table, and the translation results are accumulated for a 3∗3 neighborhood in
the translation subspace. A city-block weighted voting method reduces the
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impact of the more common small relative distances. The recognition process
is repeated with different scattering centers as basis points, providing mul-
tiple “looks” at the model database to handle spurious scatterers that arise
due to articulation, occlusion, or configuration differences. The recognition
algorithm actually makes a total of 9N(N − 1)/2 queries of the look-up table
to accumulate evidence for the appropriate target type, azimuth angle, and
translation. The models (labels with object, azimuth, etc.) associated with
a specific look-up table entry are the “real” model and other models that
happen by coincidence, to have a scatterer pair with the same (range, cross-
range) relative distance. The constraints on magnitude differences filter out
many of these false matches. In addition, while these collisions may occur
at one relative location, the same random object-azimuth pair doesn’t keep
showing up at other relative locations with appropriate scatterer magnitudes
and mapping to a consistent 3∗3 neighborhood in translation space, while the
“correct” object does.

1. Obtain from test image the location (R, C) and magnitude (S) of N strongest
scatterers.
2. Order (R, C, S) triples by descending S.
3. For each origin O from 1 to N do 4

4. For each point P from O+1 to N do 5, 6
5. dR = RP − RO; dC = CP − CO.
6. For DR from dR − 1 to dR + 1 do 7

7. For DC from dC − 1 to dC + 1 do 8, 9, 10
8. weighted vote = |DR| + |DC|.
9. Look up list of model entries at DR, DC.
10. For each model entry E in the list do 11

11. IF |tr = RO − RE | < translation limit
and |tc = CO − CE | < translation limit
and |1 − SEO/SO| < magnitude limit
and |1 − SEP /SP | < magnitude limit
THEN increment accumulator array [Object, Azimuth, tr, tc]

by weighted vote.
12. Query accumulator array for each Object, Azimuth, tr and tc, summing

the votes in a 3x3 neighborhood in translation subspace about tr, tc;
record the maximum vote sum and the corresponding Object.

13. IF maximum vote sum > threshold
THEN result is Object ELSE result is “unknown.”

Figure 2.10. Recognition algorithm

The basic decision rule used in the recognition is to select the object-
azimuth pair (and associated “best” translation) with the highest accumulated
vote total. To handle identification with “unknown” objects, we introduce a
criteria for the quality of the recognition result that the votes for the poten-
tial winning object exceed some minimum threshold vmin. By varying the
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decision rule threshold we obtain a form of receiver operating characteristic
(ROC) curve with probability of correct identification, PCI = P{decide cor-
rect object|object is true}, vs. probability of false alarm, Pf = {decide any
object|unknown is true}. We call the algorithm a 6D recognition algorithm
since, in effect, we use the range and cross-range positions and the magnitudes
of pairs of scattering centers. (When using 40 scatterers, this 6D algorithm
takes an average of 2.5 seconds to process a test chip on a Sun Ultra2 without
any optimizations.)

More formally, a radar image of object c at azimuth pose a consists of N (or
more) scatterers, each scatterer k with a magnitude Sk and range and cross-
range locations Rk and Ck, which (for consistency) are ordered by decreasing
magnitude such that Sk ≥ Sk+1 where k = 1, . . . , N . A model M of object c
at azimuth a is given by

M(c, a) = {V1(c, a), V2(c, a), . . . , VN(N−1)/2(c, a)}, (2.1)

which is comprised of the set of all pairwise observations, Vi,

Vi(c, a) = {f1, f2, . . . , f6}i, (2.2)

where i = 1, 2, . . . , N(N − 1)/2, f1 = RP − RO, f2 = CP − CO, f3 = RO,
f4 = CO, f5 = SO, f6 = SP , and with the individual scatterers in each pair
labeled O and P so that SO ≥ SP for consistency (see Figure 2.11).
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Figure 2.11. Observation for a pair of scatterers O and P .

We define a match, H, as
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H(Vi, Vj) =
{

w if |(fb)i − (fb)j | ≤ δb, ∀ b = 1, . . . , 6,
0 otherwise (2.3)

where the weight w = |(f1)i|+|(f2)i| and the match constraints are δ1 = δ2 = 0
pixels, δ3 = δ4 = 5 pixels and δ5 = δ6 = L percent.

The recognition result, T , for some test image (with a test class, x, and
test azimuth, y, to be determined) is a maximal match that is greater than a
threshold, D, given by

T =

{
[c, a] , if arg maxc,a,t

(∑9
l=1

∑N(N−1)/2
k=1

∑9
n=1 Hl

t(V n
k (x, y), Vm(c, a))

)
> D,

“unknown,” otherwise
(2.4)

where Vm ∈ M(c, a) ∀m such that |(f1)V n
k

− (f1)Vm
| = 0 and |(f2)V n

k
−

(f2)Vm | = 0, and the subscript t applied to a match denotes that the match,
Ht, is associated with the relative translation t(R,C) = (∆f3, ∆f4) of the
stronger scatterers in the two observations. Note that in this formulation the
constraint on m avoids exhaustive search of all the models and can be imple-
mented as a look-up table. The nine observations (denoted by the superscript
n in V n

k ) are made to account for location uncertainty by taking the 3∗3
neighbors about the nominal values for the relative locations f1 and f2 of
scatterer pair k in the test image. Similarly, the nine matches (denoted by
the superscript l in H l

t) are computed at the 3∗3 neighbors located ±1 pixel
about the resulting nominal value for translation, t(R,C), of the scatterers in
the test image from the model.

2.4 Incorporation of Additional Features

A traditional approach to improving recognition performance is to find ad-
ditional features that distinguish between the objects. The basic SAR recog-
nition system, the 6D system described in Section 2.3, successfully evolved
from an earlier simpler 2D version, [12] that used only relative distances and
the “exact match” scatterer locations. The 6D version adds: (1) the scatterer
magnitudes as additional features; 2) the within-one-pixel quasi-invariance of
scatterer locations; and (3) the consistent translation constraint.

In addition to the scattering center locations and magnitude features, a
“shape factor” can be used as a measure of the sharpness of the local peak
in the radar return associated with a scattering center. We define the shape
factor F = Sk/

∑8
i=1 Si, where Sk is the amplitude of the peak and the Si’s are

the amplitudes of the eight neighbors. Figure 2.12 shows the PMFs for percent
shape factor change for the strongest 40 scattering centers of T72 #812 vs.
#132 (at 15◦ depression angle). Curves are shown both for cases where the
scattering center locations correspond within one pixel tolerance and for all
the combinations of scatterers whose locations do not match. For the cases
with locations that match within one pixel, the percent shape factor change
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Figure 2.12. Shape factor change with configuration.

mean and standard deviation are 1.3 and 15.7, while for the nonmatching
cases they are 5.3 and 31.3, respectively.

The peak shape factors can be used as additional features to create an 8D
version of the basic recognition system in a manner similar to the way that
the magnitudes of the peaks are handled in the 6D system. Figure 2.13 shows
ROC curves for the MSTAR T72 and BMP2 configuration variants with the
BTR confuser using the 2D, 6D, and 8D recognition systems. Each of the
systems was optimized for the forced recognition configuration variant case:
the 2D system at 20 scatterers; the 6D system at 36 scatterers (with ±5 pixel
translation and ±9% amplitude change limits); the 8D system at 50 scatterers
(with a ±30% shape factor change limit). Both the 6D and 8D system results
are a substantial improvement over the earlier 2D system results. While Fig-
ure 2.13 shows that the 8D system gave worse results than the 6D system in
the region below 0.1 Pf , reoptimizing the operating parameters (e.g., using
45 scatterers) gives the 8D system better results in the region below 0.1 Pf

at the cost of a slightly reduced forced recognition rate.

2.5 Exploitation of Model Similarity

2.5.1 Similarity Measurement

Model similarity can be measured in terms of collisions collisions, where a col-
lision is an instance when observations of two different objects map into the
same location (within some specified region of uncertainty) in feature space,
i.e., if H(Vi, Vj) = 1 and ci 
= cj . The recognition system described in the
preceding section has a 6-dimensional (6D) feature space based on the range
and cross-range positions and magnitudes of pairs of scatterers (see equa-
tion (2.2)). As noted before (in equation (2.1)), the model of an object at
some azimuth, with N scatterers, is represented by N(N − 1)/2 observations
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Figure 2.13. ROC curves for configuration variants with 2D, 6D and 8D systems.

using pairs of scatterers with each pair mapped into the 6D feature space.
While the 6D feature space could be represented by a simple 6D array in
concept, the large range of potential feature values and high dimensionality
make other implementations more practical. The nature of the SAR problem,
with discrete pixel values for distances and a large dynamic range for scat-
terer magnitudes, leads to a natural model implementation, shown previously
in Figure 2.9, where the relative range and cross-range locations of a scatterer
pair are direct indices to a physical 2D array of lists that contain another
4D of information and the label with the object and pose. Thus, the model
construction algorithm of Figure 2.9 does not directly provide collisions in all
six dimensions of feature space. In order to determine if two objects map to
the same location in feature space we need to apply the same constraints as
are used in the recognition algorithm (see step 10 of Figure 2.10 and equa-
tion (2.3)), because the constraints dictate the size of the region or bucket in
feature space that is considered the same location.

The general approach to measure the similarity of one model object with
respect to several other objects is to first build the look up table models of the
other objects using the normal model construction algorithm of Figure 2.9,
and then use a modified version of the recognition algorithm of Figure 2.10
with the subject model object (at all the modeled azimuths) as the test con-
ditions to obtain a histogram of the number scatterer pairs that have various
numbers of collisions. Basically the modified algorithm uses the first ten steps
of Figure 2.10, with the consideration of each pair of scatterers as a separate
occurrence (starting a new count of collisions at step 5) and if the constraints
are satisfied (at step 10) then a collision is counted. The total number of obser-
vations is equal to AN(N −1)/2, where A is the number of azimuths modeled
(some of the MSTAR data was sequestered, so not all 360◦ were available).



54 Bir Bhanu and Grinnell Jones III

Figure 2.14 shows example model collision histograms (at N = 39 and
L = 9) for four MSTAR vehicles (at 15◦ depression angle): BMP2 armored
personnel carrier (APC) serial number (#) c21; BTR70 APC #c71; T72
tank #132 and ZSU23/4 anti-aircraft gun #d08. Note that the ZSU23/4 has
significantly fewer collisions with the other vehicles, because the ZSU23/4
SAR scatterers cover a larger area than the other objects, and thus, have
fewer collisions.
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Figure 2.14. Example recognition model look-up table collision histograms.

The similarity of a pair of scatterers of given object (at a given azimuth) to
the other objects modeled can be measured by the number of collisions with
other objects in the look-up table. This can be expressed as a relative measure
by using the collision histogram. For convenience, the population of collisions
for a particular object is mapped into equal partitions (each with 10% of the
total number of collisions). As an example, for the collision histograms in
Figure 2.14 we obtain the results in Table 2.1, which shows the number of
collisions for a given percent of the population. For the BMP2, for example,
27 collisions or less is in the 10% of the population that is the least similar to
the other three models (whereas 90% of the BMP2 scatterer pairs have 274
or less collisions).

2.5.2 Weighted Voting

The a priori knowledge of the similarities between object models, expressed as
the number of collisions for a given percent of the population, can be captured
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Table 2.1. Number of collisions for a given percent of the population (example for
N = 39, L = 9).

Object Number of collisions
BMP2 27 46 66 87 110 136 167 209 274 676
BTR70 21 37 53 70 91 116 148 192 266 712
T72 27 48 68 89 111 137 168 209 271 667
ZSU 23/4 0 0 0 0 0 1 3 18 78 760
Population percent 10 20 30 40 50 60 70 80 90 100

by assigning weighted votes to model entries in the look-up table, based on
collisions with other objects. This is accomplished off-line by again using a
version of the recognition algorithm to obtain the number of look-up table
collisions for a particular observation with a pair of scatterers from a subject
model and azimuth, as before, and then based on the number of collisions
determine the population partition (e.g., using Table 2.1) and finally a given
weight function is used to assign a weight label to that instance of the par-
ticular model observation entry in the look-up table. Thus, in this approach
the model similarities, collisions and associated weightings are all precom-
puted and appropriate weightings are stored in the look-up table during the
off-line modeling process. The similarity-weighted models are obtained using
the weighted version of an observation (similar to equation (2.2)) given by

V̂i(c, a) = {w, f1, f2, . . . , f6}i, (2.5)

where w is the weight. The similarity weighted version of a match (similar to
equation (2.3)), given by

Ĥ(Vi, V̂j) =
{

w if |(fb)i − (fb)j | ≤ δb, ∀ b = 1, . . . , 6
0 otherwise (2.6)

can be substituted in equation (2.4) to obtain weighted recognition results.
The various weight functions, used in this research to specify w, are shown
in Figure 2.15 which plots the weight value assigned vs. percent of collision
population. Function 1 (Figure 2.15(a)) applies equal weight to all the values
and is later referred to as unweighted. Functions 2–4 (Figures 2.15(b)–(d)),
the convex weight functions, penalize the most similar features (in the right
tail of the histogram). Function 5 (Figure 2.15(e)), with equal steps is linear.
While functions 6–7 (Figures 2.15(f)–(g)), which reward uniqueness (the left
tail of the histogram) are concave. These weight functions illustrate a range
of possibilities from function 2, which penalizes only the most similar 10% of
the population, to function 7, which rewards only the most dissimilar 10%.
These seven weight functions are used and comparative performance results
are obtained in experiments described in the next subsection.
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Figure 2.15. Table weighting functions.

2.5.3 Configuration Variant Experiments

Our previous results [9] (using a distance-weighted voting technique where the
weight was proportional to the sum of the absolute values of the relative range
and cross-range distances between the scatterer pair) showed that for the real
vehicles used in the MSTAR data, the differences of configurations for an
object type are a more significant challenge for recognition than articulation
(where the model and the test data are the same physical object under differ-
ent conditions). Similarly, the previous results [11] on occluded objects (using
an unweighted voting technique) demonstrated significantly better recogni-
tion results than the configuration variant cases. For these reasons, in this
research we follow a similar approach and optimize the recognition system
for the difficult configuration variant cases and then utilize the same system
parameters for the articulation and occlusion cases. In these (15◦ depression
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angle) configuration variant experiments, the two object model cases use T72
tank #132 and BMP2 APC #C21 as models, while the four object model
cases add BTR70 APC #c71 and ZSU23/4 gun #d08. The test data are two
other variants of the T72 (#812, #s7) and two variants of the BMP (#9563,
#9566). In addition, BRDM2 APC #e71 is used as an unknown confuser
vehicle.

The forced recognition results for MSTAR configuration variants are shown
in Figure 2.16 for both two object and four object look up table models using
various weight functions (defined earlier in Figure 2.15). These results use
the optimal parameters (N ,L) for each weight function and table size. For
the two object cases, function 3 gives the best results, a recognition rate of
95.81%, compared to the unweighted case of 95.17%. For the four object cases,
the convex and linear weighting functions all provide better forced recognition
performance than the unweighted case. The concave weighting functions result
in worse performance than the unweighted case. The best four object result
is 94.17% for function 2, compared to the unweighted case of 92.27%. Thus,
increasing the number of objects modeled from two to four, reduces the forced
recognition rate by 2.9% (95.17 - 92.27) for the unweighted case, while using
model similarity information in the optimum weight function reduces that loss
to 1% (95.17 - 94.17).
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Figure 2.16. Effect of table size and weighting function on forced recognition of
MSTAR configuration variants.

Table 2.2 shows example confusion matrices that illustrate the effect of
going from a two object recognition system to a four object model recognition
system for the MSTAR configuration variant data. In both cases the system
parameters (N ,L) are optimized for forced recognition (2 objects at (38,11)
and 4 at (38,12)), both are unweighted cases (constant weight of 10), and
both are for d = 1700. (At least 1700 votes, with a weight of 10, is equivalent
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to 19 or more scatterers that “matched”.) Comparing the two object results
on the left of Table 2.2 with the four object results on the right, we observe
that basically a large number of confusers and a few targets move from the
Unknown column to the additional models. Thus, while the recognition results
are similar for 2 and 4 models (PCI = 0.773 and 0.790 respectively) there are
increased false alarms (Pf = 0.13 and 0.32 respectively) which would move
the knee of the ROC curve to the right.

Table 2.2. Effect of 2 and 4 models on MSTAR configuration variant confusion
matrices (unweighted, d = 1700).

Identification results Identification results
(config. modeled) (configuration modeled)

test targets BMP2 T72 Unk. BMP2 T72 BTR70 ZSU23/4 Unk.
[serial number] (#C21) (#132) (#C21) (#132) (#C71) (#d08)
BMP2 [#9563,9566] 189 3 25 189 2 8 0 18
T72 [#812,s7] 8 131 58 11 138 1 0 47
BRDM2 (confuser) 28 4 214 27 5 47 0 167

Table 2.3 shows an example MSTAR configuration variant four object
confusion matrix for weight function 4. The system parameters (37,9) are op-
timized for forced recognition with weight function 4 and a d of 1100 is chosen
to yield a PCI of 0.776, which is similar to the results shown in Table 2.2.
(At least 1100 votes, with an average weight for function 4 of 7.3, is equiv-
alent to 18 or more scatterers matched.) Comparing the earlier four-object
unweighted results, shown on the right of Table 2.2, with the weighted results
of Table 2.3, we observe that half the misidentifications (11 of 22) are moved
to the unknown column. This reduction in misidentifications shows that the
model-weighting approach is increasing the distinguishability of the modeled
objects. This reduction in misidentifications does not show up directly in the
ROC curve results, which treat the off-diagonal target misidentifications the
same as the misses where a target is called unknown (i.e., both are cases where
the target was not correctly identified). However, the weight function (which
effectively reduces the average weighting) allows a similar PCI to be achieved
with a lower vote threshold (1100 votes vs. 1700 votes) and results in fewer
false alarms. Thus, the lower Pf of 0.276 for the weighted case, vs. 0.321 for
the unweighted case, would move the ROC curve to the left.

ROC curves are generated for the four-object configuration variant cases
by using the optimum parameters for the forced recognition case and varying
the vote threshold. Figure 2.17 shows that the ROC curves for the convex
and linear weight functions provide generally better performance than the
unweighted case. In addition, Figure 2.18 shows that the concave weight func-
tions give worse performance than the unweighted case (except for the region
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Table 2.3. Example MSTAR configuration variant confusion matrix for weight
function 4 (d = 1100).

Identification results
(configuration modeled)

test targets BMP2 T72 BTR70 ZSU23/4 Unknown
[serial number] (#C21) (#132) (#C71) (#d08)

BMP2 [#9563,9566] 179 6 1 0 32
T72 [#812,s7] 4 143 0 0 50
BRDM2 (confuser) 30 6 32 0 178

where PCI < 0.5, Pf < 0.05). The convex weight functions penalize the most
common features and so are not much affected by noise (due to configuration
differences or other confuser vehicles). On the other hand, the concave weight
functions reward (very strongly reward in function 7) the relatively unique
features, which makes them susceptible to conditions where noise is strongly
rewarded.
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Figure 2.17. MSTAR configuration variant ROCs for beneficial weight functions
(four objects).

2.5.4 Articulation Experiments

In the articulation experiments the models are nonarticulated versions of T72
#a64 and ZSU23/4 #d08 and the test data are the articulated versions of
these same serial number objects and BRDM2 #e71 as a confuser vehicle (all
at 30◦ depression angle).

Figure 2.19 shows the ROC curves, with excellent articulated object recog-
nition results for both the weight function 2 and the unweighted cases. Since
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Figure 2.18. MSTAR configuration variant ROCs for concave weight functions
(four objects).

weight function 2, with N = 39 and L = 9, gives the optimum ROC results
for the two object (T72, BMP2) configuration experiments and the optimum
unweighted parameters are N = 38 and L = 11, these same parameters are
used for the articulation experiments.
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Figure 2.19. Articulation recognition results.

2.5.5 Occlusion Experiments

The occlusion experiments use the same four models as the configuration vari-
ant experiments: T72 tank #132, BMP2 APC #C21, BTR70 APC #c71 and
ZSU23/4 gun #d08 (all at 15◦ depression angle). The occluded test data is
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generated using the technique described previously in Subsection 2.2.3. In our
previous work on occluded objects [11], the confuser vehicle was occluded.
However, while the target may be occluded, the confuser vehicle may not nec-
essarily be occluded in practical situations. Hence, in this case the BRDM2
APC (#e71) is an unoccluded confuser vehicle, which is a more difficult prob-
lem.

Figure 2.20 shows the effect of occlusion on ROC curves for weight function
2, with N = 40 and L = 9 (while N = 40 is not optimum, it yields occlusion
in 5% increments). Here with the unoccluded confuser, excellent recognition
results are achieved for less than 45 percent occlusion, compared with the
prior 70 percent occlusion with an occluded confuser [11].
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Figure 2.20. Effect of occlusion on receiver operating characteristics.

2.6 Multiple Recognizers at Different Look Angles

2.6.1 Independence of Multiple Look Angle SAR Recognizers

The azimuthal variance of SAR scatterer locations, previously demonstrated
in Figure 2.4, strongly indicates that observations at different azimuth angles
are independent. Given the probability of one SAR recognizer failing, F1,
where F1 = 1 − PCI; then if two recognizers are independent, the proba-
bility that both recognizers are wrong, F2, is simply F2 = F12. In order to
obtain the most failures, we pick the object configuration variant case, which
is the most difficult case for our SAR recognition approach, compared to the
depression angle change and object articulation cases.

In the configuration variant experiments a single configuration of the T72
(#132) and BMP2 (#C21) vehicles are used as the models and the test data
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are two other variants of each vehicle type (T72 #812, #s7 and BMP2 #9563,
#9566), all at 15◦ depression angle. These results are obtained using the op-
timum parameters of 38 scattering centers and a percent magnitude change
of less than ±11%. These parameter settings are slightly different from the
corresponding (36 and 9%) values used previously in Section 2.4, because here
we use unweighted voting, as opposed to the previous distance-weighted vot-
ing method. Figure 2.21 takes the experimental forced recognition results for
the configuration variant cases with all available combinations of two different
azimuths and plots the probability that two recognizers are both wrong as a
function of the difference in azimuth angle of the object from the two recog-
nizers. (While Figure 2.21 emphasizes the small angles by only showing up to
±60 degrees, the results out to ±180 degrees are similar.) The single recognizer
result, 19 failures in 414 trials, is an F1 failure rate of 0.0459, which is plotted
for reference as point “a” in Figure 2.21. For an F1 of 0.0459 the predicted
value of F2 is 0.0021, which is very close to the overall experimental aver-
age F2 of 0.0025 . The other interesting observation from Figure 2.21 is that
the results are independent of the angle difference, even for very small values
like 1 degree. This demonstration that multiple-look-angle SAR recognition
results are independent, even for small angles down to 1 degree, provides the
scientific basis for both measuring and improving the quality of recognition
results.
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Figure 2.21. Probability that two recognizers are both wrong.

2.6.2 Multiple-Look-Angle Configuration Variant Results

In contrast to the forced recognition case described in the previous subsection,
in these configuration variant experiments the BTR70 armored personnel car-
rier (#c71) is used as an unmodeled confuser vehicle to test the recognition
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system and the vote threshold parameter is used to generate “unknown” re-
sults. The other test conditions and parameters are the same as the forced
recognition case (most significantly, the models are one configuration of the
T72 and BMP2 vehicles and the test vehicles are two different configurations).

Figure 2.22 shows the effect of multiple look angle recognizers on the prob-
ability of false alarm using the BTR70 as a confuser. (The BTR70 is a more
difficult case than other confusers such as the BRDM2 armored personnel
carrier or the ZSU 23/4 anti-aircraft gun [9].) In the cases with two recogniz-
ers, the decision rule is that if either gives results above the vote threshold,
the result is declared a target (which, for these BTR70 confusers, would be
a false alarm). Thus, with this “target bias” decision rule the multiple recog-
nizer cases have higher false alarms than a single recognizer. It is important
to note that the penalty in increased false alarms is small for the left tail of
the curve. Figure 2.22 also shows that the false alarm rates are similar for
all the two-look angle recognizer cases and that agreement on the “target” is
basically irrelevant for a false alarm.
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Figure 2.22. Effect of multi-look on probability of false alarm.

Figure 2.23 shows the effect of multiple-look-angle recognizers on the prob-
ability of correct recognition for the configuration variant case where the test
data are different configurations of the T72 and BMP2. The top curve shows
the results for the 91.7 percent of the time when two recognizers at different
look angles agree on the result. The bottom curve is for the remaining 8.3 per-
cent of the time when the two recognizers disagree and the answer that gets
the most votes is chosen. The second curve, labeled “best of two,” uses a de-
cision level fusion rule that simply picks the target based on which of the two
recognizers got the most votes. (This case is also the weighted average of the
agree and disagree cases). In Figure 2.23 the probability of correct recognition
decreases as the vote threshold increases (to the left in Figure 2.23), because
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the higher threshold causes more targets to be classified as “unknown.” The
recognition results for using the best of two recognizers at different look an-
gles are substantially better than the results for a single recognizer. This is
basically the result of fewer “misses,” where a target object is classified as
an “unknown”; because there are two opportunities to get above the vote
threshold and declare a “target.”
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Figure 2.23. Effect of multi-look on probability of correct recognition.

Figure 2.24 combines the results of Figures 2.22 and 2.23 and shows
the effect of using multiple-look-angle recognizers on the ROC curve for the
configuration variant cases. These recognition results, using the best-of-two
recognizers at different look angles, are substantially better than the results for
a single recognizer. For example, at a 0.10 Pf the PCI for the best of two look
angles is 0.8324, compared to 0.7091 for a single recognizer. The performance
improvement is because the cost in increased false alarms (in Figure 2.22) is
low compared to the benefits in increased recognition (in Figures 2.23), due
to fewer targets being classified as “unknown.”

2.6.3 Multiple-Look-Angle Articulation Results

In the articulated object experiments the models are nonarticulated versions
of T72 tank #a64 and ZSU 23/4 anti-aircraft gun #d08 (with the gun turret
straight forward) and the test data are articulated versions of these same se-
rial number objects (with the turret rotated) and BRDM2 armored personnel
carrier #e71 as a confuser vehicle (all at 30◦ depression angle). The results
of applying the same techniques (and all the same recognition system param-
eters) in these articulated object experiments are shown as ROC curves in
Figure 2.25. Again the results for using two recognizers at different look an-
gles and picking the answer with the largest number of votes are better than
the single recognizer results.
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Figure 2.24. Effect of multilook on configuration variant ROC curve.
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Figure 2.25. Effect of multilook on articulated object ROC curve.

2.6.4 Multiple-Look-Angle Occlusion Results

The occlusion experiments use four models: T72 tank #132, BMP2 APC
#C21, BTR70 APC #c71 and ZSU23/4 gun #d08 and the unmodeled con-
fuser vehicle is BRDM2 APC (#e71) (all at 15◦ depression angle). The oc-
cluded test data is generated using the technique described previously in Sub-
section 2.2.3, while the BRDM2 APC (#e71) is the more difficult unoccluded
confuser vehicle.

Figure 2.26 shows the effect of multiple-look-angle recognizers on the prob-
ability of correct recognition for the case of 50% occluded targets and an un-
occluded confuser. The same techniques (and all the same recognition system
parameters) used in the prior configuration variant and articulation experi-
ments are applied to these occluded object experiments. Here again, using two
recognizers at different look angles and a decision-level fusion rule of picking
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the answer with the largest number of votes gives better results than a single
recognizer.
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Figure 2.26. Effect of multi-look on 50% occluded object ROC curve.

2.7 Conclusions

The locations and magnitudes of a significant number of SAR scatterers
are quasi-invariant with target configuration variations and articulations. A
model-based recognition system, using inexact match of local features can
successfully handle difficult conditions with object configuration variants, ar-
ticulation, and occlusion. A comparison of experimental recognition results
for MSTAR configuration variants is shown in Table 2.4 for different methods
of improving performance of SAR recognition systems involving incorpora-
tion of additional features; exploitation of knowledge of model similarity; and
integration of multiple recognizers at different look angles. Recognition rates
are shown for forced recognition cases and for cases with a 0.10 confuser false
alarm rate.

The use of additional scatterer magnitude features, the consistent trans-
lation constraint, and the ability to handle inexact matches of these local
features are fundamental to the success of the basic 6D recognition system,
compared to the earlier 2D system [12] which only used relative scatterer
locations and required an exact location match. Additional quasi-invariant
features, such as peak shape factor in the 8D system, can provide some in-
crease in recognition performance.

The similarities between object models can be effectively quantified using
histograms of collisions in feature space. This a priori knowledge of object
similarity can be successfully used to improve the performance of SAR target
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Table 2.4. Comparison of results for MSTAR T72 and BMP2 configuration variants
(6D systems, except as noted by *).

recognition rate
forced at 0.10 Pf

Additional features [Figure 2.13]:
* 2D system 0.712 0.058

6D system 0.947 0.554
* 8D system 0.957 0.636
Use model similarity:
function 2 [Figure 2.17], 4 models 0.942 0.609

2 models 0.949 0.744
Multiple look angles:
best of two [Figure 2.24] 0.975 0.832

recognition. The approach can increase the distinguishability of the modeled
objects, reduce misidentifications, and result in decreased false alarms. This is
especially beneficial in cases where the number of modeled objects is large. One
set of results shown in Table 2.4 for “model similarity” is for a more difficult
case with four models, while all the other cases in the table are for two models.
In the most difficult configuration variant cases, the convex and linear weight
functions, which penalize the most common features, give better performance
than the concave weight functions, which strongly reward relatively unique
features.

The fundamental azimuthal variance of SAR scatterer locations can be suc-
cessfully used as the basis for a principled and effective multiple-look-angle
SAR recognition approach. The experiments demonstrate that SAR recogni-
tion results at different azimuths are independent, even for small azimuths,
such as one degree. In addition, using decision level fusion of two observations
at different look angles can substantially increase SAR recognition perfor-
mance for target configuration variants.

These techniques have also been successfully applied to recognition of ar-
ticulated objects and occluded objects. In experiments using MSTAR SAR
data with a BRDM2 APC confuser and articulated versions of a T72 tank
and ZSU 23/4 anti-aircraft gun, the basic 6D recognition system with non-
articulated T72 and ZSU 23/4 models achieved a 95.6−95.7% recognition rate
(depending on system parameters) with a 0.10 Pf . Comparable rates using
the model similarity and multiple-look-angle approaches increased to 98.0%
and 99.0% respectively (see Figures 2.19 and 2.25). Similarly, for experiments
with 50 percent occluded objects (with an unoccluded confuser), using the
model similarity approach achieved a 70.1% recognition rate at 0.10Pf and
multiple look angles achieved 100%, while the basic 6D system only achieved
a 20.7% recognition rate (see Figures 2.20 and 2.26).



68 Bir Bhanu and Grinnell Jones III

Higher-resolution SAR data, instead of the one-foot resolution now com-
monly available, would greatly increase the discriminating power of the current
scatterer location and magnitude features. Additional features such as valleys
or ridges could also be used, especially with higher-resolution data. The ap-
proach of exploiting knowledge of model similarity will become more critical
in scaling the recognition problem from 2 to 4 objects to a more realistic 20 to
40 objects. The multiple-look-angle approach could be readily extended to use
more than two look angles and more formal methods, like Dempster–Shafer
and Bayesian techniques could be used for decision-level fusion. In addition,
while the research described in this chapter independently addresses three
basic approaches to improve recognition performance: (1) incorporation of
additional features; (2) exploitation of a priori knowledge of model similar-
ity; and (3) integration of multiple recognizers at different look angles, these
techniques could be combined in practice to address difficult operating con-
ditions involving large numbers of different objects with the combined effects
of non-standard configurations, articulation and occlusion.
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Summary. Three-dimensional laser radars measure the geometric shape of objects.
The shape of an object is a geometric quality that is more intuitively understood
than intensity-based sensors, and consequently laser radars are easier to interpret.
While the shape contains more salient (and less variable) information, the computa-
tional difficulties are similar to those of other common sensor systems. A discussion
of common approaches to 3D object recognition, and the technical issues (called op-
erating conditions), are presented. A novel method that provides a straightforward
approach to handling articulating object components and multiscale decomposition
of complex objects is also presented. Invariants (or more precisely covariants) are a
key element of this method. The presented approach is appealing since detection and
segmentation processes need not be done beforehand, the object recognition system
is robust to articulation and obscuration, and it is conducive to incorporating shape
metrics.

3.1 Introduction

Lasers provide many advantages for the object recognition problem, especially
when compared to passive electro-optical (video) sensors. For robust object
recognition, it is desirable for the sensor to provide measurements of the object
that are stable under many viewing and environmental conditions. Further-
more, these sensor measurements, or signatures, should be easily exploitable
and provide enough richness to allow object-to-object separability. Specifi-
cally, 3D imaging laser radar (ladar) greatly simplifies the object recognition
problem by accurately measuring the geometric shape of an object in 3D (pre-
serving scale). In contrast many other sensing techniques inherently suffer a
loss of information by projecting 3D objects onto 2D or 1D images. Another
advantage of ladar shape measurements for object recognition is that the ob-
ject signature is far less variable than other sensing modalities (e.g., the shape
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of the object does not vary due to lighting, diurnal affects, thermal loading,
range, etc.). However, there is still difficulty since the ladar effectively samples
an object’s surface slightly differently each time. Another complicating factor
is that ladar does not sample a scene on a uniform sampling lattice. Further-
more, a general complication for recognition is the lack of a general theory of
discrimination (i.e., how to tell objects apart). This chapter will present the
fundamentals of generic ladar systems, and detail a method for handling the
differences in images due to articulation and viewpoint changes.

Generically, ladars can be thought of as an orthographic projection of the
world onto the sensor (see Figure 3.1). Many 3D imaging ladars provide a
range and intensity measurement at every point in the sampling lattice. Direct
detection and coherent detection are two common ladar detection techniques.
A complete treatise of ladar detection techniques is beyond the scope of this
chapter [1]. The intensity value is a measurement of the amount of energy
reflected from the appropriate region of the sampling lattice. This measure-
ment is directly related to the monostatic bidirectional reflectance distribution
function (mBRDF) of the material illuminated by the laser pulse. The inten-
sity image is effectively a narrow-band, actively illuminated 2D image. This
chapter focuses on the range measurement. The inherent data coordinate sys-
tem for 3D ladar is {angle, angle, range}={θ, φ, ρ}, where θ is the depression
angle and φ is the azimuth angle from which the transmitted laser energy
propagates from the sensor for each point in the sampling lattice. This is a
polar coordinate system that can be transformed into a rectilinear {x, y, z}
coordinate system. Many different types of ladars exist, but for simplicity a
flash ladar constructed with a focal plane array (FPA) of detectors will be as-
sumed as the standard in this chapter. The term flash implies that the whole
range and intensity image is measured at one time by spotlight illuminating
the entire scene with one laser pulse. Alternately, a scanning 3D ladar im-
ages a scene by scanning one or several Laser beams over the entire sampling
lattice. Although scanning ladars will be briefly described, the assumption
is that appropriate motion compensation for platform motion has been done
such that the resulting range image from the scanning ladar is equivalent to
a (3-D) flash ladar. This assumes that the scanning mechanism operates in a
linear fashion.

Operating conditions [2] have been discussed in many papers since their
inauguration during the DARPA Moving and Stationary Target Acquisition
and Recognition (MSTAR) program. Essentially the operating conditions are
an attempt to describe everything that can affect the sensed image. They
include sensor, target, and environmental parameters. Understanding all the
standard and extended operating conditions is a first step to the development
of an object recognition system. For the purposes of this chapter, they are
categorized as (i) conditions whose effect on the image can be modeled (i.e.,
by a group action), (ii) conditions that obscure the image of the object (but
are not easily modeled), or (iii) conditions that do not affect the part of the
image corresponding to the object (i.e., changes in background). The goal is to
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Figure 3.1. General ladar scene. This conceptual diagram illustrates the typical
scenario and primary drivers of the sensed imagery. Most ladars return both a range
and intensity at each pixel.

model and mitigate sufficient geometric effects to create a robust recognition
system. The approach is model–based and object-centric.

A 3D ladar object recognition system can be thought of as a “simple” data
fusion technique. It is simpler than more general fusion techniques because
(typically) only one sensor and one image is involved. Even for this simple
case the algorithm must efficiently fuse the information collected from each
image pixel (or voxel, short for volumetric picture element, since it contains a
third dimension). Enough pixels must be considered simultaneously to remove
the unknown nuisance parameters of the model. For example, a single range
return (without any other knowledge) cannot contain any information about
the shape of the object. For the purposes of this chapter, “shape” is defined
as what is left after translation and rotation have been removed. At least four
points are needed (for 3D) to extract the local shape. Noise and small changes
in the sampling grid can seriously affect the measured shape if the four points
are in close proximity. Close proximity is preferred to mitigate obscuration
and articulation, but dispersed locations are preferred to mitigate noise and
achieve separability. Thus, the algorithm must make intelligent and efficient
use of multiscale information to balance these issues.

The goal of 3D ladar object recognition systems is to classify images based
on how similar or dissimilar the shape from the image is as compared to the
shape of each object in a database. A metric is required to quantitatively
compare and sort objects based on shape. The triangle inequality property of
a metric enables efficient sifting through a large database by removing whole
classes of objects that are different enough to be immediately removed from
consideration. A modified form of the Procrustes metric is used for this object
recognition system. This metric is constructed by considering the quotient
space that is invariant to translation and rotation.
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While 2D and 1D ladar systems exist and have many useful applications,
for the purposes of this chapter ladar will imply 3D imaging ladar. A 3D
model will be referred to as an object, and an {angle, angle, range} projection
of that object (with a ladar at an arbitrary orientation) as an image or range
image.

3.2 Ladar Sensors

3.2.1 Hardware

ladar sensors are active devices that avoid numerous issues inherent in passive
systems and in stereo 3D reconstruction approaches. The two primary types
of active range sensors are direct detection (also known as time-of-flight) and
coherent detection.

Most direct-detection sensors periodically emit a short intermittent pulse
and the distance is calculated by measuring the round-trip time (given the
speed of light). This eliminates one type of shadow region that occurs with
standard stereo 3D reconstruction approaches when a portion of the scene is
not visible to both sensors [3]. However, shadow regions will still occur due to
self-occlusion and occlusion of the background by objects in the foreground.
This is one of the major differences in 3D image formation using ladar and
the sensors used in the medical community. ladar is a reflective sensor while
many 3D medical imaging sensors are partially transmissive.

Coherent detection techniques measure distance with a continuous (or mul-
tipulse) laser beam by measuring the phase shift of the reflected signal with
respect to the original signal. Continuous-beam lasers require more power
and are less covert. Furthermore, coherent detection techniques require more
complex hardware than direct detection techniques.

Many ladar sensors have a single emitter and detector that are scanned
across the scene at a constant angular resolution (see Figure 3.2). Although
this is (currently) less expensive than the flash arrays that follow, there are
numerous disadvantages. The primary disadvantage is that it takes longer to
image a scene by scanning. A secondary problem is the nonlinearities induced
by the scanning motion and by scene and object motion during the scanning
process.

3.2.2 Projection

The appropriate choice of the projection model for ladar is muddled since the
projection model will be different depending upon which coordinate system is
utilized! In the native {angle, angle, range} coordinate system the projection
model is a pinhole camera (full perspective model). Consider two parallel line
segments in a plane orthogonal to the line of sight of the ladar. As the lines
are moved farther away from the sensor, the angle subtended with respect
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Figure 3.2. Typical ladar sensor hardware. A simplified diagram of the most com-
mon scanning, direct–detect system.

to the sensor decreases as 1
range (in each dimension). Therefore the angular

extent of the lines within the image decreases as a function of their range.
The farther an object is from the sensor, the fewer pixels that will be on

the object’s surface (commonly called pixels-on-target). Lines that are paral-
lel in 3D (but not parallel to the FPA) converge to a vanishing point in the
{angle, angle, range} image. This is known as the “train tracks phenomenon.”
Standard video cameras are also perspective projection. A fundamental dif-
ference is that video cameras cannot recover the absolute size of the object.
In contrast, since a ladar measures the range, the size of the object can be
calculated (up to the pixelation error).

An orthographic projection model is appropriate for a rectangular coor-
dinate system. It is not possible to perform this coordinate transformation
directly with video cameras. The addition of range information enables the
conversion for ladar from polar to rectangular coordinates. This is not pre-
cisely correct since the rectangular voxels should grow larger as the depth
increases analogous to the change in size of the polar voxels. Alternately, the
x–y precision decreases for voxels that are farther from the sensor. For those
familiar with radar systems, which are also orthographic, this is analogous to
the fact that the signal-to-noise ratio decreases as the object moves farther
away from the sensor.

3.2.3 Angle–Angle

A flash ladar’s FPA is analogous to the CCD arrays used in digital cameras
and video cameras where each array element contains a tiny receiver. Unlike
CCD cameras, ladar is an active sensor and a single laser is used to spotlight
illuminate the entire scene with each laser pulse. The laser is co-located with
the receiver to form a monostatic system. Therefore, each element in the focal
plane array can be viewed as containing both a receiver and a transmitter.

The FPA structure is inherently different from scanning systems as illus-
trated in Figure 3.3. Lenses can be used to transform to either array format,
but FPAs are easier to build with a constant array size. A constant angular
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size has a modest advantage during the polar-to-rectangular transformation
that is commonly done in software. Neither system will obtain a uniform
sampling of an observed surface in general. In Figure 3.3 a constant array size
would obtain a uniform sampling of a flat surface that is parallel to the FPA,
but as the surface rotates out of plane it will be sampled non uniformly. The
only surface that would be sampled uniformly in general is a spherical surface
with its origin placed at the focal point of a constant angular size ladar sys-
tem. In summary, most ladar systems are natively {angle, angle, range} (i.e.,
polar coordinates). Algorithms that are conducive to polar coordinate sys-
tems will have an inherent computational and noise advantage, because it is
not possible to transform from the (discretized) polar coordinate system to
the (discretized) rectangular coordinate system without some interpolation
scheme.

(a) (b)

Figure 3.3. ladar focal plane arrays. A notional one-dimensional focal plane array
is portrayed with a constant array size (a), and with a constant angular size (b). The
choice of coordinate system will affect sensor design and the corresponding algorithm
development. For FPAs, uniformly sized arrays, (a), are easier to construct and can
achieve a constant angular size using a lens. For scanning ladar systems, it is easier
to use constant angular step scan mirrors creating a constant angular array (b).
Caution is still necessary since neither a constant angular or constant array size
imply a uniform sampling of the object surface.

3.2.4 Range

Each pixel of the ladar measures the energy returned as a function of time.
This is called the “range profile,” and a notional example of a range profile
for one pixel is illustrated in Figure 3.4. The majority of systems return the
location and intensity of the nth-peak, where n is typically the first or last
peak. This is commonly called “first bounce” or “last bounce.” Some newer
systems return the entire range profile or the first m detected pulse returns.
This has advantages for reasoning about obscuration and validating edges and
surfaces more complex than flat plates.

The returned pulse is the convolution of the transmitted signal with the
object surface. Thus, the determination of the actual range is accomplished
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Figure 3.4. ladar range profile for one pixel. The range profile is the returned signal
as a function of time (or distance). When multiple objects are within the field of
view, more than one peak will occur. Current ladar systems typically return the first
or last bounce peak of the range profile. Newer systems return multiple peaks or the
entire profile.

by deconvolving the transmitted signal from the returned signal. This is gen-
erally an ill-posed problem. The common solution is to assume that the object
surface is flat and therefore a simple peak detector is used to determine the
estimated range. Hardware designers employ several common pulse detection
strategies and these directly affect the location of the sensed return pulse.
Furthermore, the selection of pulse detection technique will change the noise
statistics. When multiple surfaces are within the same resolution cell, multiple
peaks occur within the returned signal such as are illustrated in Figure 3.4.
The nth-peak approach is a trade-off between accuracy and speed.

3.2.5 Transmission

Atmospheric effects such as scintillation (atmospheric transmission) and semi-
transparent obscuration (clouds and smoke) limit the useful range of ladar
systems. Platform vibration mitigation can also be difficult to achieve for
high-resolution systems. Currently, ranges beyond 5 km are typically relegated
to 1D or 2D systems unless advanced techniques, like pulse-doublets, is used.
Experimental high-resolution 3D systems have greater operational ranges.

The reflectance properties of the object can severely affect the returned
signal, or cause a complete dropout (i.e., where no return is recorded for the
given pixel). Dropouts can occur if the reflectance is too high (shiny metal
reflects the emitted energy away from the detector) or too low (the material
attenuates the reflected energy to a peak value below the threshold of the
detector).

Range gating is a technique that is commonly applied to mitigate the
affects of obscuration and semitransparent obscurants. The concept is to only
examine the part of the signal that could have come from something near
the estimated object location. In other words, if some portion of the energy
is returned too quickly, then it is probably the result of reflecting off nearby
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clouds or smoke. Multiple reflections can cause a portion of the energy to
return late. The finer the ability to accurately range gate, the better the
signal-to-noise ratio will be. The associated peak detector or more advanced
algorithms are more robust by applying this simple geometric constraint to
the data.

The wavelength of the ladar is an interesting question from the point
of view of computer vision beyond the visible spectrum. Lasers in the visi-
ble wavelengths are obviously very common; however, most sensor platforms
would prefer to be covert. Atmospheric transmission and lack of generic tun-
able band-gap materials also limit the choice of wavelength. A common wave-
length today is 1.06µm. However, this wavelength is not eye-safe and therefore
the potential applications are limited. Longer wavelengths are being investi-
gated not only for eye safety, but also for better weather and aerosol penetra-
tion.

3.2.6 Synopsis

Many other topics with regard to ladar system design could be addressed
here. For example, polarization, noise statistics, and hardware limitations are
all very important considerations for the design and exploitation of ladar data.
However, this section is intended to be a basic initiation into key features of
ladar hardware and phenomenology.

The primary purpose of this chapter is to discuss object recognition capa-
bilities given a ladar sensor. ladar sensor engineers often want to know how to
optimize their sensor design for a particular application. However, a discrim-
ination theory does not currently exist and therefore sensor optimization for
object recognition is often based on standard pattern recognition techniques
applied to very limited data sets. Approaches that are beginning to address
this shortcoming are discussed after the presentation of existing algorithm
approaches.

3.3 Is 3D Ladar Object Recognition a Solved Problem?

ladar object recognition is not a solved problem, primarily due to computa-
tional complexity issues. It has been argued that computer vision is generally
an ill-posed problem that will never be solved. From an information-theoretic
point of view, 3D sensors contain more information than 2D sensors because
2D sensors suffer a loss of information from the projection of R

3 �→ R
2. Still,

the computational problems are no easier for 3D than they are for 2D or 1D.

3.3.1 Technical Challenges

The computation complexity issues are primarily due to the operating con-
ditions briefly mentioned in Section 3.1 and further illustrated in Table 3.3
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on p. 92. Ross [2] is an excellent paper on defining operating conditions. The
following list represents the subset of the operating conditions that are key to
the 3D ladar object recognition problem:

• Translation
• Rotation
• 2.5D projection
• Surface resampling
• Number of pixels-on-target
• Point correspondence (labeling, registration)
• Obscuration
• Articulation
• Fidelity
• Unknown objects

An algorithm that can efficiently and effectively handle all of these problems
would be a major advancement in the fields of object recognition and computer
vision. Note that “noise” is not explicitly listed. This is intentional since it
is the belief of the authors that noise is not the fundamental limitation of
current object recognition approaches.

Added to all these difficulties, the development process is seldom conducive
to solving these hard problems. Typically, most of the money is spent on the
hardware and data collections. The exploitation efforts are not begun until
the final stages of the development. This leads to an additional set of issues:

• There is never enough data.
• The sensor parameters are undefined or incorrect.
• The ground truth will be incomplete or incorrect.
• The operational “requirements” will be way beyond the state-of-the-art.
• The money will be limited.
• Time will be limited.
• Expectations will be too high.
• The capabilities will be oversold.
• The sensor models will not be understood.
• Mother Nature is enigmatic.

Each of the technical challenges will now be addressed in more detail.

Translation

The first challenge refers to the fact that the coordinate system is sensor-
centered, not object-centered. Therefore, the {x, y, z} or {θ, φ, ρ} pixel loca-
tions for a particular point on the object can change arbitrarily. In other
words, the algorithm should recognize the object whether it appears at the
top of the image or the bottom of the image or anywhere in between. Trans-
lation is the easiest challenge to solve, but caution is necessary. The standard
approach is to move the centroid of a region or volume of interest to the origin.



80 Gregory Arnold et al.

If the object is consistently segmented from the background every time then
this simple method will suffice. However, approaches that are more compli-
cated are needed if the algorithm is to successfully match partially obscured
or articulated objects.

Rotation

The above method of removing translation can be interpreted as putting the
data into a standard position. A proof exists [4] that the equivalent approach
cannot be done to handle rotation. In general, however, the eigenvectors of the
inner product of the (rectangular) coordinates are invariant to rotation. The
primary difficulty is with degenerate objects or completely symmetric objects
such as a sphere. The difficulty manifests itself as the need for heuristic algo-
rithms to choose the sign and ordering of the eigenvectors. Mathematically,
quotienting out 3D rotation from the ladar data does not result in a smooth
manifold.

2.5-D Projection

The term 2.5D is used to convey the fact that ladar sensors cannot see through
an object [1]. As noted in Section 3.2.1, ladar is a reflective sensor, not a
transmissive sensor like most medical 3D sensors. A “true” 3D sensor would
return a computer-aided design (CAD) model of the object (i.e., front, back,
and all the information in between). A ladar only returns the range to the
first dispersive surface. Thus, there is a requirement to match an “image” to a
model in the database. Ideally, the ladar data can be compared directly to the
appropriate portion of the CAD models that are used to describe the objects
of interest.

Surface Resampling

The sampling grid’s relative location on the surface is slightly different each
time the surface of the object is sampled. Sometimes these differences are
negligible, but a shift of half a pixel can be significant, especially for low
resolutions or near, sharp edges. Typically, algorithm developers consider each
point in a point cloud as the distance to the object at that particular grid
point. This assumption would be correct if the instantaneous field of view
(IFOV) of the detectors in the FPA were infinitesimally small. However, this
is never the case and the detectors see a portion of the target larger than an
infinitesimally small point. Therefore, the range measurement returned is the
average distance of the surface(s) within the pixel’s extent (depending upon
the peak extraction algorithm). This simplification is harder to make when
working with the complete range profile. The implication is that approaches
(like graph matching) based on vertex locations will fail without compensating
for this affect. Point correspondence algorithms must carefully handle this
affect too.
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Number of Pixels-on-Target

The absolute range from the sensor to the surface of the object is measured
and therefore size (scale) is a known quantity. However, the farther the object
is from the sensor, the fewer the pixels per unit surface area. For example, for
a fixed angular resolution ladar, halving the range to an object quadruples the
number pixels on the object. It is possible to calculate the area of the pixel
at the object’s surface. However, at the initial stages of the object recognition
system it is often more computationally efficient to normalize out the number
of pixels-on-target. This is a trade-off between discrimination capability and
computational cost.

Point Correspondence

Even ignoring the issues about resampling the surface, registration is a com-
putationally complex problem—potentially factorial in the number of points
to be corresponded. There are some nice algorithms available from the opera-
tional research and pattern recognition literature (called the bipartite match-
ing or Hungarian algorithm)[5, 6, 7]. A nice summary and approach is provided
in [8] and a powerful new approach is presented in [9]. However, even these
have complexity that is polynomial in the number of points to be imaged.

An additional consideration is that “point correspondence” typically im-
plies that there are equal numbers of points to register. The problem becomes
even more complex when the goal is to match as many points as possible from
two different point clouds. The above references have various approaches to
solve this problem.

An elegant solution to this problem is required before any algorithm is
computationally feasible. Two (previously mentioned) complications are that
corresponding points will never be precisely the same due to noise, and the
points may not physically represent precisely the same region from the scene or
CAD model, i.e., the image grid shifted. The first complication necessitates
the use of a metric, and the second complication implies that the ultimate
goal is to register the measured point cloud directly to a CAD model. In
other words, there may not be an advantage to converting the CAD model to
a point cloud for the purposes of matching.

Obscuration

Can an object still be recognized if it is not completely visible? Of course one
can never see all of an object simultaneously, and algorithms must work even
if everything that is expected to be visible in an image is not. Some parts of the
object are more salient than others, so a true understanding of an algorithm’s
capability to handle obscuration can only be made with an understanding of
the saliency of the visible surfaces. Jones [10] shows relatively good results
against obscuration and articulation in 2D. Hetzel [11] presents an approach
for 3D data that has an additional advantage as segmentation is not required.
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Articulation

Articulation and obscuration each force a tradeoff between local and global
features for object recognition algorithms. Articulation refers to the fact that
objects have specific ways of changing. For example, cars have doors that can
open, and people can move their arms, legs, and head. It can also be something
that may or may not appear on an object, such as a spoiler on a sports car.
The ability to recognize an object is typically limited to one instantiation
without the ability to recognize each of these variations as allowable changes
of the same object.

Fidelity

A physical and geometric model of the world, the sensor, and everything in
between may be conceivable, but it is computationally unachievable. Each
step in the processing chain, from the ladar probing the world to the out-
put of the probability of a matching database model, makes simplifications
to achieve computability and potentially compromising fidelity. Ideally these
simplifications would be achieved while preserving the fundamental discrim-
ination capability or be constructed in such a way as to provide incremental
steps back to achieving the ideal discrimination capability. The goal is to be
able to recognize all the objects (and corresponding poses) in the image with
a finite number of computations.

In general, increased fidelity requires greater computation. The link be-
tween complexity and database indexing (search) is very strong. The indexing
step is an n-class recognition problem, whereas the final validation is a one-
class hypothesis verification. Most of the computations are consumed by the
search (throwing out the models that do not match). The fundamental ques-
tion is how to minimize the required fidelity and still guarantee that potential
matches cannot be incorrectly pruned.

Unknown Objects

This problem has been addressed the least in current literature. The question
is how to realize that something is not represented in the database. Ultimately,
it boils down to drawing a threshold in a one-class recognition problem, but
that threshold should make sense geometrically and with respect to the ap-
propriate noise model. All that can typically be done with current systems
is to decide which database object the image looks most like. Thus, the final
threshold is drawn based on experiments with limited data sets. As mentioned
in the previous technical challenge, the indexing step must be dependent upon
the objects in the database, but the final step of verifying the hypothesized
identity should be independent of the other objects in the database. Only a
controlled environment, where unknown objects cannot occur, would allow
the algorithm to bypass the final verification step.
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3.3.2 Shape Representations

Object representation is a critical first issue in the construction of an object
recognition system. From an information-theoretic point of view, the algo-
rithm should use the raw data directly from the sensor since each transforma-
tion potentially introduces additional noise into the system or loses relevant
information.

A rough hierarchy can be imposed upon the different representations that
have been proposed by various authors. The following list of shape represen-
tations is ordered in an ascending level of abstractness:

1. Point cloud.
2. Features (points, edges, corners, normals).
3. Triangular mesh.
4. NURBS (biquadratic surfaces).
5. Superquadrics/generalized cylinders (geons).

Note that the number of parameters necessary to describe the shape of an
object decreases as the level of abstractness increases. Consequently, object
matching based on the more abstract representation is less complicated. A
useful survey of techniques for data representation can be found in [12, 13, 14].
Each representation is briefly discussed subsequently.

Point Cloud

A point cloud generally denotes the raw data that is available directly from
the sensor.

Features

Features are a first-level abstraction of point clouds. Feature points could be
as simple as pruning the point cloud to only include points at “interesting”
places, such as along edges or corners. The features could also be an augmen-
tation of the point cloud with a local surface normal.

Triangular Mesh

A triangular mesh is the most common form of mesh that is used. Triangular
meshes can be interpreted as a linear approximation (and interpolation) of
the point cloud data. Ideally, the choice of vertices for the triangles is made
to minimize the difference between the measured point cloud and the cor-
responding point cloud that would be generated from the mesh. A mesh is
typically constrained to be continuous; however this is generally not sufficient
to enforce a unique mesh representation. Additional constraints are often ap-
plied in order to achieve a unique representation, such as attempting to make
the all of the triangles nearly equilateral. However, this is not possible in gen-
eral, so corresponding recognition algorithms must be able to handle different
representations for the same object.
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NURBS

Nonuniform rational B-splines (NURBS) [15] are a generalization of biquadratic
surfaces. These representations typically model a 2D surface embedded in
3D [16]. Patches of NURBS can be thought of as the generalization of meshes.
The patches form a complete covering of the object’s (measured) surface.
Then, the surface within the bounds of each of these patches is represented
by a NURBS surface. An immediate complication is defining a robust and
unique decomposition of data into model patches, similar to meshes. Thus,
the recognition algorithm cannot rely on the same object being modeled the
same way for every instantiation of the object.

Superquadrics/Generalized Cylinders

Superquadrics [17] and generalized cylinders [18] (or geons) model a volume of
data. They define specific mathematical forms to model the data. For example,
generalize cylinders estimate a cross-section and then sweep the cross-section
along the measured data. At each step along the swept out path the centroid
of the cross-section is located, and the size of the cross-section is estimated.
Objects are constructed by assembling multiple generalized cylinders together.
This is clearly an ill–posed problem for obscured or unseen portions of the
object. Generally, a symmetry assumption is made, or efforts are made to
demarcate what portions of the surface were constructed from measured data.

Synopsis

All of these higher-level object representations have great promise; however,
none of them have lived up to that promise to date. While a successful higher-
level representation would greatly simplify the object recognition process, in
practice these representations have simply traded simplicity in one portion of
the overall system for added complexity in another with zero or negative gain.

The “negative gain” comes from the fact that these representations are ex-
actly that — representations. Object recognition is based on discrimination.
While one can argue that there is a functional dependence between represen-
tation and discrimination, it is easy to generate examples such that any given
representation is the worst possible choice to differentiate the exemplars. How-
ever, this is not meant to encourage the other common extreme, which is to
collect enough data to distinguish the classes (i.e., data-driven approaches).
The goal is to find the right representation to optimize the discrimination
capability with respect to the storage or speed requirements. This can only
be discovered by modeling the entire object recognition system and using the
scientific method such that the data is simply an experiment to validate or
refute a hypothesized system model.
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3.3.3 Shape Recognition/Indexing Approaches

Two obvious approaches to recognition are image-based and model-based.
Jain [19] provides an excellent overview of statistical pattern analysis tech-
niques. The most common image-based approach is template matching, and
correlation is the most common similarity measure used in template match-
ing. Some common approaches are briefly described below. Every approach
has three common problems:

1. How to detect and segment the object from the background.
2. How to build and search a large database (avoiding local minima).
3. How to interpret results when the match is not perfect.

The following list and detailed descriptions represents many common ap-
proaches to shape recognition that have been developed and tested. Refer-
ences [12] and [13] are good survey papers.

1. Image-based matching (matched filter, template match).
2. Model-based matching.
3. Geometric hashing.
4. Hough transform.
5. Evidence accrual.
6. Learning approaches (neural networks, genetic algorithms, etc.).
7. Tree search (graph matching).
8. Principal components (eigenspace, eigenface, appearance-based).
9. Invariance (Fourier, moments, spherical harmonics, spin images).

Table 3.1. A summary of some typical characteristics of various approaches to
shape recognition. A more detailed description of each method follows.

Approach Model Empirical Voting Alignment
Image-based

√ √ √

Model-based
√ √ √

Hashing
√ √ √

Hough
√ √

Evidence accrual
√ √

Learning
√ √

Tree
√ √ √

Principal Components
√ √ √

Invariance
√ √ √ √

Image-Based Matching

Image-based or pixel-level matching generally implies the most common matched-
filter-type comparison. This could be a comparison between two different mea-
surements, but more generally is a comparison between a synthesized signa-
ture and the measured image using a “hypothesize and verify” type approach.
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Intuitively, a matched filter is the average of the squared error between each
measured pixel and the corresponding template pixel, or a nearest-neighbor
type algorithm in a very high-dimensional space. A plethora of variations
on this approach is available for purposes such as robustness to outliers and
improving relative separability. “Image-based” refers to the fact that the al-
gorithm is trained on measured or synthetic image data.

Image-based approaches suffer from both the complexity of the correspon-
dence problem (finding the template in the image) as well as the complexity
of building the template database. Moreover, it has been shown that “every
consistent recognition scheme for recognizing 3D objects must in general be
model based” [20]. Although this was referring to 2D imagery, the pretext still
stands and thus pixel-level matching is best suited as a final validation step.

Pixel-level validation promises the maximum discrimination capability that
is achievable (again from an information theoretic point of view). Several ad-
ditional considerations are implied by pixel-level validation that are not com-
monly lumped into standard matched filtering techniques. First, a template
is generated from a modeling and simulation capability since precise informa-
tion is required which cannot be created apriori by data collections (due to
cost and complexity). Second, the projection of the model into the image is
used to determine the best estimated segmentation. This information should
then be used to (a) perform a pixel-level validation for the visible parts of
the object, (b) ignore the portions of the object that are obscured, and (c)
provide a consistency check that the background looks like background (as
opposed to unmodeled portions of the object).

A background consistency check is crucial to avoid the “box-in-a-box”
problem. This problem appears when trying to recognize different sized ob-
jects. For example, a small box looks exactly like a larger box, except (from
the sensor point of view) there is additional information that would be ignored
without the consistency check. In other words, it would be easy to “recognize”
the smaller box within an image of the larger box (however, it would be hard
to recognize the larger box given an image of the smaller box). Alternately,
is half a car still a car? It is possibly still a car if the other half of the car
is obscured, but not likely if the measurements indicate the other half of the
car is missing (as evidenced by measurements coming from behind where the
other half of the car should be). Even if the algorithm was intelligent enough
to realize two known objects are easily confused for each other, a background
consistency check is still required so that unknown objects will successfully
be rejected.

Model-Based Matching

The fundamental premise of model-based approaches is that the desired ob-
ject and few other things will obey the constraints defined by the model. The
system’s ultimate performance will be bounded by how well the models can
predict the real world and all of its subtleties. As with other methods, inverse
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methods do not currently exist for efficiently matching measured data back to
these models. Therefore, current versions of model-based matching are very
similar to template matching. The basic approach is “hypothesize and ver-
ify,” where the geometry and physics models are used to synthesize an image
corresponding to the hypothesis and then a verification technique is applied
to compare the measured and synthesized data. Most of these approaches can
be classified as

1. voting-based (geometric hashing, pose clustering, or generalized Hough
transforms): voting in a parameter space for potential matches, or

2. alignment-based: searching for additional model-to-image matches based
on the transformation computed from a small number of hypothesized
correspondences.

The selectivity and an error analysis based on these approaches has been re-
ported [21, 22, 23]. These techniques are discussed in more detail subsequently.

The different voting-based techniques primarily differ in their choice of a
transformation space in which to tabulate votes to elect potential matches [24,
10]. These techniques are computationally efficient, accurate, and robust the-
oretically. The difficulty is in applying these techniques with a noise model.
Most of the demonstrated systems assume that the robustness of the system
will handle the noise. However, Grimson [23] demonstrates that the affect of
the noise is dependent on location. This violates a fundamental assumption
of the geometric hashing technique that the noise is independent of where the
selected basis was located. Grimson suggests a modified voting technique, but
the computational expense and loss in selectivity is clear in comparison to the
alignment-based approach, especially as the noise increases.

Huttenlocher and Ullman [25] presents an alignment-based approach. Ja-
cob and Alter [21] demonstrates that an alignment-based approach has better
error characteristics than voting–based techniques, primarily due to the error
approximations being much more accurate in the alignment-based approach
(the transformation into the voting space generally make the error very dif-
ficult to estimate). Grimson [23] demonstrates, based on the selectivity of a
matching set, that a large number of matches are necessary to reduce the
probability of false match toward zero. Although Jacobs [21] developed a lin-
ear approach for matching points, this still does not handle the combinatorics
associated with determining the initial minimal match between the image and
object.

To conclude, the model-based approach has significant advantages such as
limited dependence on measured data (so it is extendible to unsampled data
regimes), and orders of magnitude reduction in online storage requirements.
The typical disadvantage to model–based approaches is the online cost of
synthesizing images corresponding to the hypothesis, especially when complex
interactions occur between objects and backgrounds.
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Geometric Hashing

Geometric hashing is essentially an index tabulating an exhaustive enumera-
tion of feature values. The goal is to build an index offline so that the occur-
rence of a feature in the image is linked to the occurrence of those features
for a particular model or models in the database. For example, given a set of
features with integer labels between one and five, a hash table would record
which models have which features. In addition, it may record the relative fre-
quency of occurrence of the objects for each features value (using some apriori
information about the relative frequency of occurrence of the models).

Given the following occurrence data:

• Model 1: Features 2,4
• Model 2: Features 1,5
• Model 3: Features 5,5,4,2

the hash table in Table 3.2 would be constructed.

Table 3.2. An example hash table. The table contains the number of times a feature
is present for each model. The occurrence of a feature in the image can be directly
indexed into potential matches from the database.

Features Model 1 Model 2 Model 3
1 0 1 0
2 1 0 1
3 0 0 0
4 1 0 1
5 0 1 2

Now, given an image containing a feature of type 1, it is obvious that
Model 2 is the only possible match in the database. Furthermore, if a feature
of type 3 is found, no models match. If feature type 5 is found, Model 3 is
more likely than Model 2.

Additional information, such as the look angle from which the feature was
visible, may also be stored in the hash table. This is useful for further refining
the hypothesis to include pose, especially when there is significant overlap
between the features and models.

This is a simplistic model of geometric hashing. The principal difficulties
are: (a) enumerating and binning all the images so that they can be recorded
in the hash table, (b)the separability of the hash table once extensive enumer-
ation has been accomplished, and (c) noise forces the discrete features to be
treated probabilistically. This makes the matching much more complex, and
once again highlights the need for metrics. References [26] and [27] implement
hash tables to achieve efficient indexing.
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Hough Transform

The Hough transform converts images into the parameter space of lines.
This technique is presented in most pattern recognition and computer vi-
sion books [28]. The generalized Hough transform extends this technique to
parameter spaces for other object descriptors (generally geometric curves and
surfaces). The concept is that an edge extraction technique has been applied
to the image, and now the goal is to combine the evidence to identify lines
despite noise and missing segments.

Lines in a 2D image could be parameterized by an angle and the loca-
tion of an intercept along an axis. However, this parameterization does not
uniquely identify lines that are parallel to the axis of intercept. Many differ-
ent parameterizations are possible, but for demonstration a simple angle–angle
representation will be used. A notable benefit of this particular representation
is that both parameters have the same domain and range. Thus, the bin size
and number of bins should be the same for each parameter. The relative pro-
portion of bins is not as obvious if, for example, slope and intercept are used
as the parameters. The general goals in choosing the parameterization include
minimizing the number of parameters, nondegeneracy of the parameters, com-
putational complexity, boundedness of the parameters, and uniformity of the
parameter distributions. Figure 3.5 illustrates a binning scheme that might
be used for the angle–angle parameterization. Notice that the middle bins are
effectively more forgiving (coarser quantization) than the bins near the edges.
Also, some bins cannot possibly have any support from the image. Thus, an
improvement upon this scheme would make the bins a uniform size in the
image.

Figure 3.5. Hough transform binning. Here are three examples of the 30×30 differ-
ent bins corresponding to sampling the circle every 6 degrees. The square represents
the image and the circle is shown to demonstrate the construction of the bins. The
bins correspond to approximately equivalent lines in the image. Any pixels falling
within a bin gives support to that particular line.

Lines in a 2D image intersect a circle circumscribing the image in two
locations (the circle must be around the outside of the image in order to
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avoid lines tangent to the circle). These intersections uniquely define the line,
and provide a minimal global parameterization of lines in the image. The circle
is discretized into 30×30 bins, and a two-dimensional Hough space is created,
each axis corresponding to the bin locations along the circle. Each feature in
the image votes for all the bins that contain that appropriate point in the
image. The relation between the image locations and Hough bins can be pre-
computed offline so that the online computation is minimal. Bins containing
multiple features will always have more votes than bins containing few or no
features. Thus, the bins with the most votes are the most likely to contain a
line. The presence of a line still needs to be verified.

Evidence Accrual

Evidence accrual is most commonly another name for Bayesian statistical
inference methods [29, 26], although Dempster–Schafer is also common. The
approaches and applications are well beyond the scope of this chapter. In
general, they are similar to Hough transforms in that ultimately a voting space
is established (appropriately normalized to produce a valid probability). Both
positive and negative evidence can be accrued. “Negative evidence” refers to
evidence that contradicts the hypothesis. Evidence accrual can be used both
for determining what models are most likely given an image, and for deciding
whether to accept or reject a particular hypothesis given an image. Dempster–
Schafer’s advantage in this respect is that it has a framework to incorporate
the unknown class and it can generate confidence levels with so-called belief
functions [30].

Learning Approaches

Neural networks are another area that are well beyond the scope of this chap-
ter [31]. Many different types of networks (generally biologically inspired) have
been designed, all with the basic idea of taking the available input data as
well as truth information and producing the desired output data. A learn-
ing (training) process is used along with feedback (when available) to gen-
erate the desired output for a given input. The networks are generally con-
structed by multiple levels of massively interconnected computational nodes
and thresholds. Neural networks are an excellent tool for a quick assessment
of the computability of a desired process. However, the inability to guarantee
robust decisions and handle unknown objects limits their applicability to ob-
ject recognition. The reliance of the training process on available data is its
fundamental weakness, both because a model is required [20] and because it
is typically difficult to predetermine how the decision boundaries generalize
to new data. In particular, it is necessary to avoid overtraining, a condition
in which the network memorizes the training data and recalls it perfectly but
does not generate the true class boundaries.
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Genetic algorithms are another biologically inspired approach to object
recognition. Genetic algorithms are essentially an optimization technique akin
to simulated annealing and gradient descent. The “training” is an iterative
process of creation and destruction of potential solutions. Creation involves
taking existing solutions and randomly mutating or hybridizing to create new
solutions. All the solutions are evaluated based on a measure of success, and
those that fall below some threshold are destroyed. This very useful optimiza-
tion technique is appropriate when other methods of modeling and simplifying
the problem are not possible.

Tree Search

Tree search algorithms are easily as numerous as pixel-level validation varia-
tions. The most common approach is to assume the data can be efficiently and
correctly segmented into chunks based on local similarity constraints. Then a
tree structure is used to describe the relative geometric relation between the
chunks. Labels are added to the nodes of the tree that correspond to informa-
tion extracted from the individual chunks. Finally, trees may be replaced by
linked graphs so that missing information will not be detrimental to the match-
ing process [16]. The primary difficulty is how to handle the nonuniqueness of
the various partitionings of the image without making the search computa-
tionally intractable. “Decision trees” are an automated approach to building
trees [32].

Principal Components

Principal components, also known as eigenspaces, Hotelling, and Karhunen–
Loeve transforms, minimize the mean-squared error in the reconstructed data
as elements are dropped from a linear basis. The concept is developed in most
pattern recognition and computer vision books [32]. Variations on the basic
concept have been suggested that are invariant to translation, rotation, and
other useful group actions. It is both an advantage and a disadvantage that
the optimal (linear) transformation is data dependent. This enables the data
to be transformed such that the principal components are linearly indepen-
dent. However, the ability to determine and remove any linear dependence
between the coefficients representing the objects is limited to the available
data. Furthermore, any functional dependence between the components can-
not be addressed. Finally, the standard technique is not appropriate for object
recognition, since it is optimized to minimize representational error, not dis-
crimination. Section 3.4.2 will detail how Procrustes analysis successfully uses
the eigenspace to determine the distance between objects. Reference [33] is the
seminal paper on eigenfaces, and [34] develops appearance-based techniques.
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Invariance

Some constraints are required so that not everything can be matched to every-
thing. Data-driven approaches infer the constraints from the available data,
whereas invariance-based approaches use a model (group action) of how the
objects transform. The invariance approach is to equivalence sets of images
that differ only by some (predefined) group actions. The concept is best ex-
pressed in the statistical shape analysis literature, shape is what is left after
translation, rotation, and scale are removed [35]. Therefore, if the goal is to
measure changes in shape, then invariance is a natural tool.

Invariance to a particular group action can be achieved many different
ways. This includes both variations in the actual invariant function, but also
in methods of calculating the function. In particular, invariants can be explicit
or implicit. Implicit invariants are functions that are independent of the group
parameter. For example, x1 − x2 is invariant to translation along the x-axis.
Explicit functions achieve invariance by fixing the group parameter. This is
also known as “standard position.” The best example is moving the centroid
of the data to the origin. No matter how the data is translated, by moving
the centroid back to the origin, the compensated data is explicitly invariant
to translation.

It only takes a quick example to demonstrate why invariant approaches are
important. Consider a standard hypothesis-and-verify technique. Even if the
operating condition parameters can be safely quantized as in Table 3.3, the
total number of hypothesis is beyond exhaustive computational capabilities.

Table 3.3. Enumeration of quantized operating conditions. The total number of
hypothesis is beyond exhaustive computational capabilities.

Parameter Quantized Bins
Object type 20
Object aspect 72
Depression angle 5
Articulation (1 DoF) 36
Configuration (4 binary) 16
Obscuration 400
Correspondence 20
Netting 5
Total Hypotheses 165, 888, 000, 000 = 1.6 × 1011

The most common problem with invariant-based techniques is a lack of
understanding of the affect of the transformations into an invariant space.
It is trivially true that a constant function is invariant to any group action,
so it is only illustrative to point out that many objects are mapped to the
same equivalence class by this function. An invariant basis can be derived
such that it only equivalences objects that are the same up to the desired
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transformation; however, the affect of noise can be substantially different for
each invariant basis. Therefore the choice of invariant basis must be carefully
considered. Furthermore, it is not trivial to determine the distribution of the
objects in invariant space given a distribution of objects in parameter space.

Invariants provide the most promising theoretical approach, but current
approaches have not achieved their potential for solving the object recognition
problem. However, progress is being made using several different techniques.
Johnson’s thesis [36] is the seminal paper on spin images and their application
to ladar object recognition. Funkhouser et al. [37] present spherical harmonics.
Lo and Don [38] present an excellent summary of invariants formed using
moments, and [39] makes significant advances.

3.4 Shape Metrics

3.4.1 Background

The motivation for metrics is illustrated by some common questions, “What
is the potential efficacy of this sensor to my application?” and “How close is
my algorithm to achieving the maximum achievable separability?” However,
no theory of discrimination exists and therefore it has not been possible to
answer these questions in a general context. Object recognition is fundamen-
tally driven by the ability to differentiate objects. Alternately, a method is
needed to measure the difference between objects.

The metrics of interest for object recognition are invariant to the modeled
group action (e.g., rotation and translation). This is intuitively obvious as one
would not expect the distance (measurement of shape difference) between two
objects to change when those objects have been rotated.

Shape metrics provide a basis for answering these questions. However,
metrics for object recognition have been notoriously difficult to find and very
little work has been done in developing methods for constructing them. An
exception comes from the field called statistical shape analysis or morphomet-
rics [4, 35, 40]. Specifically, these books summarize and extend the research
(primarily for biological applications) that although founded in work devel-
oped throughout the century, really accelerated with papers by Kendall [41]
and Bookstein [42].

The goal in this field is to develop a shape metric based on “landmark”
features. From the object recognition point of view, these are simply pixel
locations of extracted features. Since shape is of fundamental interest, two
objects are considered similar independent of translation, rotation, and scale.
In other words, two objects are considered equivalent if they can be brought
into correspondence by translating, rotating, and scaling. This is called the
similarity group.

The metric developed for statistical shape analysis is commonly called the
Procrustes, Procrustean, or (in one specific case) the Fubini–Study metric.
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The proof that it is a metric is developed in Section 3.4.2. The Procrustes
metric is a quotient metric. Intuitively, it is easy to conceptualize consider-
ing the space of objects modulo the similarity group. Quotienting the group
action out of objects can be very difficult both analytically and numerically.
Despite these difficulties, this does provide a constructive approach to devel-
oping metrics invariant to other group actions.

Although an object recognition system must eventually make a hard deci-
sion (i.e., make a binary decision as to whether an image is consistent with a
particular hypothesized object), the concept is that this decision will occur in
the final stages of the algorithm when a pixel-level validation and background
consistency is performed. This chapter is applicable to both this final valida-
tion stage and the weeding or indexing problem where the goal is to order the
most likely candidates first. The indexer should not predetermine how many
candidates the algorithm will examine before making a final decision. The
metric will naturally rank order the models based on their similarity to the
image. Therefore the system will validate the best matches first (based on the
extracted data or features) and continue until either the validation is highly
confident in a match, it rejects all the potential matches, or a time constraint
is exceeded.

A preliminary study on the fundamental separability of objects (sets of
landmarks) based on this metric can be found in [43]. The need for appro-
priate metrics is a major theme of this chapter. There have been numerous
metrics, measures, and distances proposed throughout the history of object
recognition, computer vision, and pattern recognition. Alternative 3D pseudo-
metrics are presented in [3] and [36]. More general metrics can be found in [44]
which provides a nice summary of different metrics. Csiszár argues for a unique
choice of metrics in [45]. Finally, [46] questions whether human perception sat-
isfies any of the axioms of a metric, and [47] contains an excellent summary
of what is known about biological vision systems.

3.4.2 Procrustean Metrics

In this section the partial Procrustes metric is derived and compared relative
to other choices of a metric. The three metrics commonly used in statisti-
cal shape analysis are the full Procrustes, the partial Procrustes, and the
Procrustes metric. Each metric corresponds to a different model and the ap-
propriate selection of a given metric, in the context of the object recognition
problem, depends upon the sensor being employed.

Let G be the similarity group — the group generated by the rotation,
translation, and scale (dilation)— and consider the componentwise group ac-
tion R

m × · · · × R
m × G → R

m × · · · × R
m. The associated quotient space,

Σk
m, is called the shape-space of order (m, k)

Σk
m ≡ R

m × · · · × R
m/G,
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where k corresponds to both the number of features and the number of copies
of R

m. Note that m = 2 represents a two-dimensional “image” space, m = 3
represents three-dimensional “volume” space, and higher values of m represent
higher-dimensional feature spaces. The procedure to calculate the (represen-
tative) equivalence classes of this quotient space as well as a metric on this
space follows.

The first step in determining the shape of an object, X, is to quotient out
translation by moving the centroid along each axis to a standard position (the
origin)

X → X − X̄,

where X̄ represents the centroid of X. This can be rewritten as a matrix
product

X → −1
k

⎡⎢⎢⎢⎢⎢⎣
1 − k 1 1 . . . 1

1 1 − k 1 . . . 1
1 1 1 − k . . . 1
...

...
...

. . .
...

1 1 1 . . . 1 − k

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C

⎡⎢⎢⎢⎢⎢⎣
x1 y1 z1
x2 y2 z2
x3 y3 z3
...

...
...

xk yk zk

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

X

where C is the k × k centering matrix (the matrix that takes the centroid to
the origin), which is symmetric and idempotent (so C = CT = CC).

The centering matrix has rank k−1 and taking the Cholesky decomposition
of C results in the first row consisting entirely of zeros. Therefore, the Cholesky
decomposition is a method for removing a linearly dependent row from C. In
particular, the Helmert submatrix, H, is defined by

HT H = C,

where C is the centering matrix presented above, and H is the Cholesky de-
composition into a lower triangular matrix followed by the removal of the row
of zeros. Thus H removes translation and reduces the dimension of the object
(analogous to dropping one point). This is exactly the number of parameters
that were removed from the group action (one parameter for the translation
of each axis). Therefore, the Helmertized object, X̂ = HX, is of dimension
(k − 1) × m and is a representative of the original object X in the quotient
space for translation. Note that H can be computed directly [35].

The scale is then removed by the scaling operation x �→ x/‖x‖, where
‖·‖ is the l2-norm as this norm is invariant to rotation. The resulting space,
R

m × · · · × R
m modulo translation and scale, is called the preshape space

and the equivalence class of X is W = HX/‖HX‖. Elements of the preshape
space are denoted by W and will also be of dimension (k − 1) × m.

A continuous global quotient space does not exist for rotation [4]. However,
the distance between the equivalence classes of W modulo SO(m) can be
defined and does exist,
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dP (X1,X2) = inf
R1,R2∈SO(m)

‖W1R1 − W2R2‖, (3.1)

where the matrix norm ‖W‖ =
√

Tr(WT W) is once again the l2-norm, and
SO(m) is the set of m × m rotation matrices. This function can be simplified
by defining R = R1R−1

2 and using Tr(BAB−1) = Tr(A) to obtain

dP (X1,X2) = inf
R1,R2∈SO(m)

‖W1R1 − W2R2‖

= inf
R1,R2∈SO(m)

∥∥(W1R1R−1
2 − W2)R2

∥∥
= inf

R,R2∈SO(m)
‖(W1R − W2)R2‖

= inf
R∈SO(m)

‖(W1R − W2)‖.

The properties of a metric can be found in any standard math reference
book [48]. The properties of the Procrustes metric are ultimately induced by
the properties of the norm. In particular, the triangle inequality property of
the metric follows from the triangle inequality for the norm

dP (X1,X3) = inf
R∈SO(m)

‖W1R − W3‖

= inf
R,R2∈SO(m)

‖W1R − W2R2 + W2R2 − W3‖

≤ inf
R,R2∈SO(m)

(‖W1R − W2R2‖ + ‖W2R2 − W3‖)

because by defining R = RR−1
2

inf
R,R2∈SO(m)

(‖W1R − W2R2‖ + ‖W2R2 − W3‖)

= inf
R∈SO(m)

∥∥W1R − W2
∥∥+ inf

R2∈SO(m)
‖W2R2 − W3‖

= dP (X1,X2) + dP (X2,X3).

Thus this function defines a metric on the shape space. Expanded out in terms
of the l2-norm, the distance is

dP (X1,X2)2 = inf
R∈SO(m)

‖W1R − W2‖2

= inf
R∈SO(m)

Tr((W1R − W2)T (W1R − W2))

= inf
R∈SO(m)

Tr(WT
1 W1 + WT

2 W2 − 2RT WT
1 W2)

= Tr(‖W1‖2 + ‖W2‖2 − 2 sup
R∈SO(m)

RT WT
1 W2)

= 2(1 − sup
R∈SO(m)

Tr(RT WT
1 W2)). (3.2)
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Globally Optimal Solution

Finding the argument of the supremum in (3.2) is equivalent to finding the
argument of the infimum in (3.1). An analytic globally optimal solution to
this optimization problem follows using singular value decomposition

WT
1 W2 = UT ΛV,

where U is orthonormal, V ∈ SO(m), and Λ is zero with a diagonal of singular
values. The singular values are positive except the smallest, λm, is the negative
if and only if det(WT

1 W2) < 0 [35]. Note that the singular values, {λi}m
i=1,

are the square roots of the eigenvalues of the matrix WT
1 W2WT

2 W1 and has
a maximum

∑m
i=1 λi = 1 (which corresponds to W1 and W2 matching).

Now the metric can be written as

dP (X1,X2)2 = 2(1 − sup
R∈SO(m)

Tr(RT UT ΛV)).

Since Tr(RT UT ΛV) ≤ Tr(Λ) with equality occurring when R = VUT ,
the supremum occurs at R = VUT . Thus

dP (X1,X2) =

√√√√2

(
1 −

m∑
i=1

λi

)
. (3.3)

This metric is called the partial Procrustes metric in the statistical shape
literature [35]. The full Procrustes metric between two objects X1 and X2
can be written with respect to their corresponding preshapes W1 and W2 as

dF (X1,X2) = inf
Γ∈SO(m),β∈R

‖W2 − βW1Γ‖.

Expressing this metric in terms of the eigenvalues of WT
1 W2WT

2 W1, as done
above for the partial Procrustes metric, gives

dF (X1,X2) =

√√√√1 −
(

m∑
i=1

λi

)2

. (3.4)

The Procrustes metric is defined as the closest great circle distance between
W1 and W2 on the preshape sphere. Kendall [41] shows that the preshape
space is indeed a sphere. In fact, the Procrustes distance on

∑k
2 is equivalent

to the Fubini-Study metric on CPk−2(4). From trigonometry it follows

d(X1,X2) = arccos

(
m∑

i=1

λi

)
. (3.5)

Finally, another distance measure is the full generalized Procrustes metric
defined by
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dg(X1,X2) = inf
Γ1,Γ2∈SO(m)

β1,β2∈R

γ1,γ2∈R
m

‖(β1X1Γ1 + 1kγ1) − (β2X2Γ2 + 1kγ2)‖

= dF (X1,X2).

where an additional constraint such as β1β2 = 1 is necessary to prevent degen-
erate solutions. The full generalized form is typically used in statistical shape
analysis for estimating the mean shape of a set of objects. This development
demonstrates it for comparing just two objects. Therefore, the only difference
between the full generalized form and the full ordinary form (as it is called
in [35]) is the inclusion of the translation in the optimization. For two objects,
the full generalized form is equivalent to the full ordinary Procrustes metric
(by using the fact that the objects can be centered, i.e., have their centroids
moved to the origin, without loss of generality). This follows since the cross
terms in the norm due to the translation will disappear because C1k = 0 for
any centering matrix C such as the Helmert matrix (C = HT H).

The three metrics can be interpreted as a path in shape space corre-
sponding to the chord length (partial Procrustes), arc distance (standard
Procrustes), and orthogonal length (full Procrustes). It should be noted that
these three metrics are order preserving relative to each other, i.e.,

dF (X1,X2) < dF (X1,X3)
�

dP (X1,X2) < dP (X1,X3)
�

d(X1,X2) < d(X1,X3).

Therefore, any of these metrics can be used if all that matters is the relative
ordering of the objects. Dryden and Mardia [35] argues that the full Procrustes
distance is the natural choice as it optimizes over the full set of similarity
parameters and because it “appears exponentiated in the density for many
simple probability distributions for shape” (p.44).

Point Correspondence

The existing literature on shape metrics presumes the point correspondence
between the objects is known or is handled elsewhere. This is also known as the
labeling problem. Conceptually, this is the internal labeling problem (match-
ing k image features to k model features) as opposed to the external labeling
problem (choosing which subset of the image features and which subset of the
model features to compare). An exhaustive computation of the external prob-
lem requires

(
P
k

)
computations (where P is the number of image features) for

each of the
(
K
k

)
feature sets (where K is the number of model features) of each
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model in the database. The internal problem requires k! computations (ex-
haustive). See [49] for more information. Algorithms for point correspondence
that are polynomial in complexity were referenced in Section 3.3.1, however
the ultimate goal is to develop an analytic solution to this problem so that
theoretical analysis of the label-invariant metric is possible.

An implicit assumption has been made that the same subset of points can
be found on the image and the object to compare. Zhang [50] presents a tech-
nique for consistently extracting the same number of points using Legendre
polynomials. The internal labeling problem for Procrustes is explored in [51].

3.5 Current Approach

The subsequently described algorithm handles most of the technical chal-
lenges previously discussed for a successful 3D object recognition system. The
conclusions and future research sections will discuss desired improvements.

The method is based on looking at “spheres” of data extracted from the
image and comparing these to “spheres” of data extracted from the models.
This method specifically avoids feature detection for improved robustness,
and this approach specifically handles articulated objects. Recognizing such
an object can involve a search in a high-dimensional space that involves all the
articulating degrees of freedom, in addition to the usual unknown viewpoint.
This algorithm uses invariants to reduce the search space to a manageable
size.

The input is a range image (in rectangular coordinates) of an unknown
object in an unknown articulation position, such as a backhoe with each link
in an arbitrary position. The desired output of the system is the identity of the
object, and the articulation and viewpoint parameters. The object is identified
using a database of known models. Since an object, like the backhoe, could
have ten degrees of freedom (DoF) it is infeasible to store all images of each
articulated object. Subsampling and storing 10 images of each DoF for just
this one object would require 1010 images, which is prohibitive. Consequently
an efficient procedure for representing and searching a database of objects is
described.

Unique features of the method described in this chapter include an inte-
gral approach to feature detection and recognition that is more efficient than
considering them separately and improves robustness to noise. The approach
includes scanning the image, so it avoids the combinatorial explosion of hy-
pothesizing feature correspondences [52, 53, 54]. This approach simultaneously
uses the data from all the points in a neighborhood (thus the robustness to
noise and obscuration).

3.5.1 The Sensor Model

The sensor model characterizes the transformation group acting on the object,
and the projection from R

3 to R
3. The model presented here is written for
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four points on an object undergoing the same rigid motion. This is a good
starting point, with the articulation being incorporated subsequently.

The transformation group is the rigid transformation (rotation and trans-
lation). The relation between the measured feature location, {u, v, r}, and the
model feature location, {x, y, z} (expressed in rectangular coordinates) is⎡⎢⎢⎣

u1 u2 u3 u4
v1 v2 v3 v4
r1 r2 r3 r4
1 1 1 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
a

R b
c

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

⎤⎥⎥⎦
such that R ∈ SO(3) (rotations), and {a, b, c} is a vector denoting a rigid
translation of R

3. The trailing 1’s are included to permit writing the transla-
tion as a matrix product. As written, both the front and back of the object
would appear in the image. The fact that a ladar cannot see the through an
object is why the projection is referred to as 2.5D in Section 3.3.1.

3.5.2 Invariants and the Object–Image Relations

Object–image relations express a geometric relation (constraint) between a
3D object and its image. This is a general approach and the particular in-
variants and number of points required for an invariant depends upon the
transformation group associated with the sensor model.

Although constructing invariants is difficult, once an invariant has been
found it is typically simple to compute. Object–image (O-I) relations are an
application of invariance theory as applied to the world viewed by a sensor
(ladar in this case). O-I relations provide a formal way of asking, “What are
all possible images of this object?” and “What are all possible objects that
could produce this image?” Clearly, this is a very powerful formalism and it
is well suited to object recognition.

Recent research has yielded the fundamental geometric relation between
“objects” and “images” (for RADAR, SAR, UHRR, EO, IR, and other sen-
sors) [55, 56, 57, 58, 59, 52]. Although the object–image relations are very
simple for ladar, they are useful for demonstrating the benefits of using co-
variants.

Fundamentally the O-I relations can be viewed as the result of elimination
of the unknown parameters in the model describing the projection of the 3D
world onto the sensor. Thus, the ladar O-I relation can be derived by eliminat-
ing the group parameters associated with object motion, and the parameters
associated with the ladar look direction (for this case, the group actions are
the same). The result is an equation relating the object to its ladar range
image written in terms of their associated invariants. More specifically, the
equation relates 3D rigid invariants (inter-scatterer 3D Euclidean distances,
determinants, or inner products) to rigid invariants measured from the ladar
image.
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3.5.3 The ladar Object–Image Relation

The above model of a ladar is essentially an orthographic projection from 3D
to 3D. An invariant of 3D objects (undergoing rigid transformations) requires
a minimum of four points (in general position), Pi = {Xi, Yi, Zi, 1}. Let the
point Pi correspond to the i− th column of a 4×4 matrix. By translating and
rotating appropriately, one can always transform the points into the standard
position, ⎡⎢⎢⎣

0 I1 I2 I3
0 0 I4 I5
0 0 0 I6
1 1 1 1

⎤⎥⎥⎦
where {I1, I2, I3, I4, I5, I6} are the object model invariants. They are invariants
under 3D rigid transformations. Linear algebra shows a unique transformation
(up to sign) exists to make this change of basis. It is not obvious without
further explanation, but the invariants are functions of the Euclidean distance,
determinants, and inner products.

The range image can also be transformed to the standard position,⎡⎢⎢⎣
0 i1 i2 i3
0 0 i4 i5
0 0 0 i6
1 1 1 1

⎤⎥⎥⎦
where {i1, i2, i3, i4, i5, i6} are the image invariants. They are also invariant
under 3D rigid transformations.

The fundamental object–image relation can now be determined by solving
the model projection equations with respect to the unknown rotation and
translation. The resulting object–image relations are

ij = Ij , ∀j ∈ {1, 2, 3, 4, 5, 6} (3.6)

An algorithm that uses these object–image relations does not need to
worry about any rigid transformations. In other words, use of the object–
image relations guarantees that all the continuous group actions that were
modeled have been factored out of the resulting equalities. What remains
are the discrete permutations, i.e., the correspondence and ordering of sets of
features between the object and image. However the formulation, as presented
above, is not feasible for two reasons:

1. Noise issues: As presented, these equations treat the initial points as “spe-
cial.” A formulation is desired that treats all points equivalently, as this
should inject some robustness to noise.

2. Complexity issues: Arnold [49] demonstrated that the complexity of a
brute force search of the discrete permutations is not computationally
feasible in general.
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Therefore a modified formulation is desired that provides an invariant relation
between the object and image, and also handles the noise and complexity
issues.

3.5.4 Covariants

Covariants provide an alternative approach to determining O-I relations by
considering equivariant functions. This section will formalize the approach,
including how projection is naturally handled in the technique.

Let G be a Lie group (a continuous transformation group) acting on an
n-dimensional manifold M , φ : G × M → M : (g, p) �→ gp. An important
example of such an action is G = GL3(R), the set of invertible matrices,
acting on the function space M =

∏3
i=1 R

3
i . An element of this function space

is simply an ordered triple,{pi}3
i=1, where each “point” pi is an ordered 3-tuple,

{xi, yi, zi}T . Here the action is a componentwise matrix multiplication—hence
the action is linear. A G-invariant function is a function Φ satisfying Φ(gp) =
Φ(p) ∀p ∈ M ∀g ∈ G. The following figure characterizes an invariant function
Φ under an action φ : G × R

n �→ R
n

nℜ nℜ

ℜ
Φ Φ

Gg ∈

where the horizontal arrow denoted by g is the induced map φg : R
n → R

n :
p �→ φ(g, p).

With respect to how this linear action is used in applications, view p as the
object variables (i.e., 3D coordinates), and q = ρ(gp) as the image variables
(i.e., 2D coordinates), where ρ is a projection from 3-space to 2-space, e.g.,

ρ =
[

1 0 0
0 1 c

]
and where c is a fixed parameter. The variable q is embedding into 3-space—
thus enabling standard invariant theoretic techniques. Embedding ρ ↪→ ρ,
where

ρ =

⎡⎣1 0 0
0 1 c
0 0 1

⎤⎦
and noting that this gives an automorphism of G = GL3(R) allows one to
write q = (ρg)p = gp. Using the property characterizing an invariant func-
tion, Φ(gp) = Φ(p) ∀p ∈ M ∀g ∈ G, it follows Φ(q) = Φ(p). This equation
provides the relationship between the “object” variables p and the “image”
variables q. Thus the O-I relation is f(p, q) = Φ(q) − Φ(p) = 0. Computation-
ally, this idea can be implemented by (1) finding the invariants of the given
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group action, and (2) “equating invariants” Φ(q) = Φ(p), and (3) eliminat-
ing any artificial components associated with the embedding (in the example,
an artificial component to q was introduced, namely the third component).
Note that the invariants found in step one have already eliminated the group
parameters from the second step. It should be noted that there are a set of fun-
damental invariants Φi i = 1, . . . , k for each group action. Hence in practice
there is a set of O-I relations Φi(q) − Φi(p) = 0 for i = 1, . . . , k. The tech-
nique of Lie group analysis makes determination of the invariants relatively
simple. This directly avoids the conceptually simple but often computation-
ally difficult task of eliminating the group parameters and camera parameters
directly.

The latter approach naturally lends itself to consideration of covariant
functions. A covariant involves two actions. The figure below characterizes the
definition of a covariant function Φ under the two actions φ : G × R

n → R
n

and ψ : G × R → R

nℜ nℜ

ℜ
Φ Φ

G∈φ

ℜ
ψ

where the two horizontal arrows correspond to the two induced maps φg :
R

n → R
n : p �→ φ(g, p) and ψg : R → R : q �→ ψ(g, q). Only nontrivial choices

of Φ, φ, and ψ are interesting. Choosing ψ as the identity is equivalent to
absolute invariants. As with invariants, the goal is to find a basis from which
all other covariants can be written. Vector-valued covariants, Φ : R

n �→ R
m,

are a fairly simple extension that will be used below. The desire is to find a
covariant with a small m.

The defining property of a covariant function Φ is Φ(gp) = gΦ(p) ∀p ∈
M ∀g ∈ G. The covariants are constructed into a set of O-I relations Φi(gp) =
gΦi(p) for i = 1, . . . , k. Similar to the case with invariant O-I relations, any
artificial components associated with the embedding must be eliminated. Note
that the group parameters have not been eliminated. The benefit of using
covariants is that it allows one to explicitly solve (estimate) for the group
transformation to move back to the standard position. This advantage follows
from the discussion on alignment versus voting techniques in Section 3.3.3.
Similarly, noise analysis is easier to perform in the original parameter space.

Covariants arise with the rigid group, En = SOn � R
n, acting componen-

twise on the product space
∏m

i=1 R
n. Consider the case n = 2. The two group

actions are

φ : (SO2 � R2) ×
m∏

i=1

R
2
i → R

2

: ((A(θ), b), {pi}m
i=1) �→ {A(θ)pi + b}m

i
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and

µ : (SO2 � R2) × R
2
i → R

2

: ((A(θ), b), q) �→ A(θ)q + b,

where

A =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

b =
[

tx
ty

]
,

and

pi =
[

xi

yi

]
.

For brevity, denote p = {pi}m
i=1.

G

g

Φ Φ

g -1

G -1

Object

Space

Covarian t

Space

Figure 3.6. Transformations in the object space induce transformations in the co-
variant space. The top row, from left to right, represents points in object space being
translated and rotated by G. The bottom row shows the covariant (the dark point
in the middle; the object points are shown for reference) representation, specifically
the centroid for this example. From left to right, the centroid is transformed by
g, the action induced by G, the object transformation. The inverse g−1 is readily
calculated, and by applying G−1 to the object it can be returned to its canonical
coordinate system.

This system gives the covariant function “centroid”

Φ =
1
m

{∑m
i=1 xi∑m
i=1 yi

}
.

An example is shown in Fig. 3.6. This result easily generalizes to 3D.
Similarly it can be shown that the eigenvectors are covariant under rotation

in 3D. These two covariants form the basis of the object recognition algorithm
to be described subsequently.
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Advantages of Covariants

The advantage of using a covariant-based method is that for a large num-
ber of points the transformations can still be computed efficiently. Whereas
invariants require searching

(
p
r

)
combinations of features, where p is the num-

ber of image points and r is the number of features required to compute the
invariants, the covariant-based technique scans the image (a neighborhood is
defined by a sphere) thereby avoiding the combinatorial problem. Therefore,
the covariant-based approach is computationally more efficient and more ro-
bust to noise. Also, as previously mentioned, the covariant-based approach
is conducive to alignment versus voting techniques. Finally, noise analysis is
easier to perform in the original parameter space.

Covariants in the Algorithm

Covariants are simply an (improved) approach to achieving invariance. Specif-
ically, calculating covariants is an intermediate step toward transforming the
selected data into a canonical coordinate system. To summarize, covariants
appear in two places in the algorithm that follows:

1. Translation: A covariant of translation is the centroid.
2. Rotation: The eigenvectors are covariant with respect to rotation.

3.5.5 Articulation Invariants?

Invariance can be used to reduce the articulation problem. When consider-
ing invariants, the imperative question is “what transformations should the
function be invariant with respect to?” For instance, when the same object
is viewed from different viewpoints, invariance with respect to the viewpoint
transformation is useful. In ladar range images, the viewpoint invariants are
the rigid invariants (in a rectangular coordinate system). This is a well-defined
group of transformations and it applies to any (static) object in the ladar range
images, i.e., the transformation group is independent of the object. Thus, the
viewpoint invariants can be applied generically to all objects.

When it comes to articulation this is no longer the case. Each object
has different articulation degrees of freedom, i.e., a different transformation
group. An object’s DoF (and therefore its transformation group) cannot be
determined from a single image. Therefore, while it is mathematically possible
to find articulation invariants for each individual object, generic articulation
invariants that apply to all objects do not exist. Lacking articulation invari-
ants, the goal is to turn as many of the articulation DoF into generic viewpoint
DoF as possible. The remaining DoF are parameterized and used to define a
manifold with respect to the canonical coordinate system.
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3.5.6 Dividing the Object

To simplify the articulation problem, viewpoint invariants are applied to parts
of the object (subobjects). To avoid explicit segmentation, these smaller parts
are not necessarily the “functional” object parts. They are arbitrary sections
of the object as partitioned by a sphere of a certain center and radius. For
example, one sphere may contain part of the body of a backhoe, and another
may contain a joint of a backhoe’s arm. The sphere that contains a rigid body
part has viewpoint DoF but no articulation. The sphere that contains a joint
has both viewpoint and articulation DoF. However this joint has only one
articulation parameter, namely the angle between the two segments of the
arm. All other DoF of these arm segments have been turned into viewpoint
DoF. In other words, using this approach, the articulation of each arm segment
is independent of the backhoe’s body. The joint within each sphere is viewed
as a separate object that is seen from an unknown viewpoint. Consequently
dividing the backhoe into subobjects reduces the number of articulation DoF
from ten to usually at most two. Viewpoint invariance methods can now be
used for each subobject such as the joint, obtaining invariants that depend
only on the angle of the joint. These invariants are a smooth function of the
angle.

A major advantage of the object division is the use of so-called “global”
invariants of each subobject. A global invariant is a function that depends
on the entire subobject rather than on isolated features such as points or
lines, i.e., a global invariant is a function of all the voxels within the sphere.
This achieves two purposes: (a) it avoids the problem of feature extraction,
with the high sensitivity associated with feature-based methods; (b) it avoids
calculating global invariants of the whole object, which would be sensitive to
occlusion and missing parts.

3.5.7 Method Summary

1. Divide each modeled object into subobjects.
2. Find global viewpoint (rigid) invariants for each subobject as functions of

its articulation parameters.
3. Use these invariant manifolds for storage, matching, and identification.

A brief description of these steps follows in the next section.

3.6 Implementation

3.6.1 Object Division

Each modeled object is divided into parts that are contained within spheres.
Spheres are utilized since they are preserved under rotation. An important
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question is how to choose the spheres’ centers and radii. Ideally all possible
centers and radii would be used, but of course this is infeasible. Consequently,
a finite set of radii starting from the biggest, containing the whole object, to
the smallest, in which the data looks planar, are selected. This results in the
description of the object on different scales. For each radius a set of centers
is chosen. Sufficient numbers of centers are necessary to describe an object
uniquely at a given scale. Although the object is 3D, its visible range image
is described as a 2D array of ranges. Currently, a rectangular grid is draped
over this array to describe where the sphere centers will be placed. Nominally,
the grid spacing is some integer subsampling of the array at some fraction of
the radius. The sphere centers are placed at the grid coordinates, {θ, φ, ρ}.
Obviously the division is dependent on the image since each image will have
a different grid and it is different from the grid on the image stored in the
database. However, the invariant functions calculated on each sphere vary
smoothly from one center to another. Consequently, it is easy to interpolate
between grid points when matching is performed.

3.6.2 Finding Invariants

Once the object has been partitioned into (generally overlapping) spheres,
the invariants of these subobjects are calculated. Note that invariants of a
3D object as a whole cannot be used since only partial views of the object
are visible to the range sensor. Thus, at a minimum, a few different views of
each object, such as front, back, and sides are required. The views are chosen
such that any other view has the same invariants as one of these views. Thus,
invariants are calculated for representative views, at various scales, and stored
in a database. These are used as reference “models.”

There are several ways to calculate such invariants. Ideally, the ones chosen
are the least sensitive to changes in the boundaries of the subobjects, resulting
from changing the radius or center of the sphere. Currently, the covariants
explained in Section 3.5.4 are used to transform the sphere into a canonical,
or standard, coordinate system. Specifically, the centroid of the subobject is
the canonical origin, and the eigenvectors form the canonical axes. The new
origin and axes are independent of the viewpoint; therefore the new coordinate
system is viewpoint invariant. See Figure 3.7 for a simplistic example.

Transforming the subobject into this system, the grid point (sphere center)
now has new coordinates that are invariant since they are given in the invari-
ant coordinate system. Hence for each subobject (or sphere) three invariants
are extracted, namely the 3D coordinates of the sphere’s center in the invari-
ant coordinate system. By using invariants to describe every grid point, the
full description of the object is invariant. This description does not depend
on point features and is insensitive to occlusion. A noteworthy complication
is the affect of image discretization. This approach assumes planar patches
connect the data points in order to facilitate the necessary integration and
normalization to marginalize the affects of discretization [3].
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X

Figure 3.7. A 2D analogy to the ellipsoid fit. The dashed circle determines the
data to be fitted by the ellipse. The axes of the ellipse (eigenvectors) define a canon-
ical coordinate system. Thus any point X within the sphere is invariant in these
coordinates.

The current approach and results shown here are based on this simple
choice of invariants. This choice was made to provide maximum robustness
to low numbers of pixels-on-target. As previously mentioned, all of the points
are invariant once they have been expressed in the canonical coordinate sys-
tem. The results are excellent; however, further discrimination and robustness
would be achievable by using more information about the data. Obvious al-
ternative approaches include using the spin images, spherical harmonics, or
moments of the “sphere of data.” Ultimately, the chosen method should in-
clude a shape metric, such as the Procrustes metric presented in Section 3.4.2.

3.6.3 Indexing

The invariants found above are functions of the articulation parameters. De-
noting the invariants of each grid point by a vector x and the articulation
parameters by a vector u, the invariants are x(u). Indexing amounts to in-
verting these functions, i.e., given the invariant coordinates x in the image,
find the articulation parameters u(x). To do that, the above relations are
represented as a surface in a hyperspace, namely f(x,u) = 0. To build this
surface, the articulation parameters are varied, and for each vector u all the
corresponding vectors x are found. In this hyperspace, the voxels lying on the
surface f are marked by 1 and all other voxels are left as 0. This is a digital
representation of the hypersurface. This is done off-line for every model in the
database. The functions for all models are thus represented in the hyperspace.
Thus indexing has been obtained such that given the invariant coordinates x,
the corresponding models can be found with articulations u. This can be done
by intersecting all the hypersurfaces with the hyperplane x = constant. For
most points xi there will be relatively few corresponding models, since most
models do not go through all points in the hyperspace even with articulation.
Thus the indexing space is rather sparse.

3.6.4 Matching

Given an image, the algorithm should match it to the closest model in the
database. An initial scale is picked, which fixes the spheres’ radii. Then the
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invariant coordinates xi are computed at each grid point as described above.
Note that the grid used for the matching step can be much more sparse than
the grid used to build the database. The next step is to find a model in the
database with an articulation u that has the same invariant spatial coordinates
xi. The algorithm starts with the invariant coordinates x1 of one point of the
given range image.

For the given point x1, the surfaces u(x1) for all models in the neigh-
borhood of this point are extracted. The whole hypersurface need not be
extracted, only the portion in the neighborhood of x1 is necessary. Several
techniques make it possible to reconstruct the surface in the neighborhood
of x1 although the original surface was constructed using a slightly different
grid [3]. Next, the intersection of all the model surfaces with the hyperplane
x1 = constant is computed. This provides a list of all models with all articula-
tion parameters uj that match the given point x1. The process is repeated for
another image point x2. This new point will have a different set of matching
models. Continuing with other points xi, all the models (and articulations)
are collected in a voting table. Each additional point xi will contribute votes
to certain models. The models with the most votes will be the best candidates
for possible further verification.

(a) (b) (c) (d)

Figure 3.8. Matching of a backhoe. In each row matching is done using a pro-
gressively smaller sphere radius. Column (a) shows crosses at the spheres’ centers.
Column (b) shows representative subobjects (hatched areas). Column (c) shows
crosses on a matching model. The invariant coordinates match in the neighborhood
of each cross. Column (d) is a projection of the model to match the images’ pose.
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3.7 Conclusions

The current algorithm, as presented, efficiently handles nine of the ten pri-
mary technical challenges. These include translation, rotation, surface projec-
tion, surface resampling, varying numbers of pixels-on-target, point correspon-
dence, obscuration, articulation, and fidelity. The final technical challenge,
unknown objects, is partially achieved.

The extensive verification step would reject unknown objects, but to do
this reliably requires a metric. Ideally, the verification will contain more infor-
mation than the location of the grid point in the canonical coordinate system.
Substantially different surfaces could produce the same grid point, so shape
metrics are required to remove this possibility and further refine the indexing
procedure.

The major contribution of this work is an approach that simultaneously
addresses segmentation, recognition, and articulation in an efficient manner.
The efficiencies are achieved by decomposing the image into subobjects, apply-
ing invariants, using a multiresolution decomposition, and hypothesis voting.
The final algorithm explicitly avoids segmenting objects from the background,
reduces the articulation parameters to a small number that are found within
small subobjects, and encapsulates the benefits of a scanning-based approach
(i.e., it is not combinatoric). This approach has demonstrated robustness in
experiments.

3.8 Future Research

Future research includes developing and testing an alignment-based technique
for comparison with the current voting technique. Future goals include devel-
oping an improved data comparison technique that has the desirable proper-
ties of metrics. However, this will in turn require readdressing the questions
of point correspondence, surface resampling, and varying numbers of pixels-
on-target. Ultimately, the goal is to minimize the overall computational cost
for the same performance. The tradeoff is computational complexity versus
saliency of the invariant features.

Quantifying and qualifying the affects of noise on the system have not been
studied extensively, and this is necessary in order to understand the robust-
ness of the system. Initial results have been promising. At the lowest level,
this would include estimating the confidence region of the range and angular
measurements from the ladar (this is dependent upon the range and the rela-
tive surface orientation). Finally, a large-scale assessment of the algorithm on
both background and modeled objects remains to be completed.
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Summary. Hyperspectral imaging sensors have been widely studied for automatic
target recognition (ATR), mainly because a wealth of spectral information can be
obtained through a large number of narrow contiguous spectral channels (often over
a hundred). Targets are man-made objects (e.g., vehicles) whose constituent mate-
rials and internal structures are usually substantially different from natural objects
(i.e., backgrounds). The basic premise of hyperspectral target classification is that
the spectral signatures of target materials are measurably different than background
materials, and most approaches further assume that each relevant material, char-
acterized by its own distinctive spectral reflectance or emission, can be identified
among a group of materials based on spectral analysis of the hyperspectral data.

We propose a two-class classification algorithm for hyperspectral images in which
each pixel spectrum is labeled as either target or background. The algorithm is based
on a mixed spectral model in which the reflectance spectrum of each pixel is assumed
to be a linear mixture of constituent spectra from different material types (target
and background materials). In order to address the spectral variability and diversity
of the background spectra, we estimate a background subspace. The background
spectral information spreads over various terrain types and is represented by the
background subspace with substantially reduced dimensionality. Each pixel spec-
trum is then projected onto the orthogonal background subspace to remove the
background spectral portion from the corresponding pixel spectrum.

The abundance of the remaining target portion within the pixel spectrum is
estimated by matching a data-driven target spectral template with the background-
removed spectrum. We use independent component analysis (ICA) to generate a
target spectral template. ICA is used because it is well suited to capture the struc-
ture of the small targets in the hyperspectral images. For comparison purposes a
mean spectral template is also generated by simply averaging the target sample
spectra. Classification performance for both of the above-mentioned target extrac-
tion techniques are compared using a set of HYDICE hyperspectral images.
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4.1 Introduction

Progress in automatic target recognition (ATR) techniques is crucial to the
rapid development of digital battlefield technologies. Targets are generally
man-made objects whose constituent materials and internal structures are
substantially different from natural objects (i.e., backgrounds). The differences
in materials and appearance between the targets and backgrounds lead to
distinctive statistical and structural characteristics in images.

A large number of target classification/detection techniques have been
developed based on broadband passive forward-looking infrared (FLIR) sen-
sors that sense electromagnetic radiation in the 3–5 or 8–12 µm bands [1]. A
commonly used multiple-band CFAR (constant false alarm rate) detection al-
gorithm for a known signal pattern was introduced in [2]. An adaptive feature
fusion technique has been recently developed, in which several local proper-
ties of the targets and backgrounds were jointly exploited within a local dual
window and then fused to integrate different local features [3]. Statistical ap-
proaches have also been studied, in which the local statistical characteristics
of the target and background regions were exploited by estimating, e.g., a
probability density function [4], a co-occurrence matrix [5], or an eigen trans-
formation matrix [6]. However, most previously attempted IR-based target
detection techniques fail to produce satisfactory performance in the presence
of high thermal clutter backgrounds or camouflaged targets.

Hyperspectral imaging sensors have been used in many remote sensing
applications, such as reconnaissance, surveillance, environmental monitoring,
and agriculture, because they capture more spectral information than a broad-
band IR sensor. Spectral information is obtained through a large number
(often over a hundred) of narrow contiguous spectral channels, each chan-
nel capturing electro-magnetic reflectance or emission within the correspond-
ing spectral range. The basic premise of hyperspectral target classification is
that the spectral signatures of target materials are measurably different than
background materials, and most approaches further assume that each relevant
material, characterized by its own distinctive spectral reflectance or emission
signature, can be identified among a group of materials. Anomaly detectors
assume only the first, while spectral matching algorithms assume the latter
as well.

We describe a two-class classification algorithm in which each pixel is la-
beled either target or background. The hyperspectral images we use were
generated with the HYDICE (HYperspectral Digital Imagery Collection Ex-
periment) sensor whose spectral range spans from 0.4 to 2.5 µm. In this spec-
tral range the signal energy is dominated by reflected solar radiation rather
than photon emission. The operation of the HYDICE sensor is normally lim-
ited to the daytime and the sensor cannot distinguish between hot and cold
targets. Targets in our HYDICE images are combat platforms whose spectral
characteristics depend largely on paint put onto a surface of the target.
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Based on the linear spectral mixing models discussed in [7], the algorithm
assumes that a reflectance spectrum of each pixel is a linear mixture of con-
stituent spectra from disparate material types present in the pixel area. If
a pixel spectrum includes a target spectrum, the pixel is labeled a target
pixel. The pixel is classified as the background, if the target spectral contri-
bution within the pixel spectrum is zero. Consequently, decomposition of the
pixel spectrum into the constituent spectra is required in order to determine
whether the target spectrum is present within the corresponding pixel spec-
trum. In order to successfully unmix the pixel spectrum, the spectral charac-
teristics of the constituent materials have to be known a priori or be obtained
from the data. In the proposed algorithm we obtain spectral information of
the material types directly from the data.

The reflectance spectra in a spatial neighborhood, even from pixels within
the same class of materials, are not identical mainly because of material varia-
tions and different illumination conditions. In addition, the background spec-
tra generally consist of the combined reflectance spectra from a number of
different natural objects, such as trees, grass, water, soil, etc. In order to
address the spectral variability and diversity of the background spectra, a
background subspace model is used to integrate key spectral signatures that
spread over the background areas, into a subspace with substantially reduced
dimensionality. Principal component analysis (PCA) is used to reduce the
dimensionality of the original background space [8, 9, 10]; a relatively small
number of significant eigenvectors are used to generate the background sub-
space.

In the proposed algorithm a target spectral template is created based
on sample spectra. The target spectral template is then matched with the
target spectral portion of the input pixel spectrum. Two methods are used to
generate the target spectral template. A target spectral template generated by
averaging the target sample spectra will not closely represent the true spectral
characteristics of the target. Instead, we use independent component analysis
(ICA) [11, 12, 13] to generate the target spectral template. ICA is applied
to a portion of the HYDICE training images containing a small number of
targets. The associated basis vector of the independent component showing
the highest target prominence, is considered to represent the spectral feature
of the target.

The target spectral portion within each pixel spectrum is obtained by
removing the background spectral portion from the pixel spectrum. The re-
moval of the background is performed by projecting the pixel spectrum onto
the orthogonal background subspace. The orthogonal subspace projection for
the subpixel target classification was first introduced by Harsanyi and Chang
[14]. The amount of target spectrum within each pixel spectrum is then esti-
mated by measuring the correlation between the target spectral portion and
the target spectral template obtained from the ICA method.

This chapter is organized as follows. The HYDICE imaging system is
briefly introduced in Section 4.2. A linear spectral mixing model for sub-
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pixel target classification is described in Section 4.3. In Section 4.4 we present
a brief introduction to ICA and ICA-based feature extraction for the hyper-
spectral data. In Section 4.5 an adaptive target classification algorithm based
on orthogonal subspace projection is presented. Localized subspace estima-
tion for the background is also introduced in Section 4.5. Two-class target
classification results for the HYDICE images using the proposed algorithm
are presented in Section 4.6. Conclusions are summarized in Section 4.7.

4.2 Hyperspectral Imaging System

Hyperspectral sensors operate in a variety of spectral bands, such as the vis-
ible, short-wave IR (SWIR: 1–2.5 µm), mid-wave IR (MWIR:3–5 µm), and
long-wave IR (LWIR: 8–12 µm). The spectral range of the HYDICE sensors
spans the visible and short-wave IR wavelengths where reflected solar radia-
tion rather than object emission is the predominant source of energy. In the
HYDICE imaging system, a group of spatially registered images, called a hy-
perspectral cube, is taken by an imaging spectrometer at a spectral range
of 0.4 to 2.5 µm with a step size of 10 nm. The imaging spectrometer splits
the reflected light (e.g., reflected sunlight and skylight) into narrow contigu-
ous spectral channels, each channel generating an associated band image, as
shown in Figure 4.1. Two-hundred-ten images are generated over the whole
spectral range. For every pixel in the cube a spectral curve is then formed,
which represents the spectral characteristics of the corresponding pixel, as
shown in Figure 4.2.

4.3 Spectral Mixing Model

Airborne or tower-based hyperspectral imaging sensors normally view large
areas on the ground, so the spatial resolution of the sensors is coarse in many
applications. The area covered by each pixel in the hyperspectral images in-
cludes several constituent materials rather than a single material type. Conse-
quently, a pixel spectrum is a mixture of the spectral signatures of the different
constituent materials present. The detection (or classification) problem that
deals with a mixed-pixel (subpixel) model has been intensively researched
[7, 14, 15, 16]. We propose a target classification algorithm based on the spec-
tral mixing model that estimates the abundances of the constituent spectra via
spectral unmixing and matching to find whether the spectrum of the material
of interest is present.

Our algorithm focuses on a two-class classification problem in which the
pixel spectrum is considered a linear combination of individual spectra of
two different material types — the target and background. In order to effec-
tively address the spectral variability of the background spectra, we estimate
a low-dimensional background subspace. The subspace is spanned by linearly
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independent vectors b1,b2, . . . ,bK , which are the first K eigenvectors of a
background covariance matrix; K is equal to the intrinsic dimensionality of
the original background space.

The target spectrum varies, due mainly to the material variations and
different illumination conditions. However, a single target spectral feature
vector st, an M × 1 column vector, may still be capable of representing the
target spectral characteristics in the data; M is the number of the spectral
bands. Based on [17], the pixel spectrum x, an M × 1 column vector, is given
by

x =

{
sta + Bc + n, if 0 < a < 1,
Bc + n, if a = 0,

(4.1)

where a is a scalar for target abundance, B = [b1b2 · · ·bK ] is an M × K
matrix, c = (c1, c2, . . . , cK)T , 0 ≤ c1, c2, . . . , cK < 1, is a K-dimensional
column vector whose components are the coefficients that account for the
abundances of the corresponding endmember spectra b1,b2, . . . ,bK , and n is
an M -dimensional column vector, representing Gaussian random noise. If x is
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Figure 4.2. Creation of spectral reflectance curves from a hyperspectral cube.

the pixel spectrum from the target regions, the target abundance a is a non-
zero value. On the other hand, a is zero if x is from the background region;
in this case, x is a mixture of the background spectra only, as described in
Equation (4.1). An accurate decision for the presence of the target spectrum
within the pixel spectrum, therefore, can lead to successful classification of
the individual pixel spectra.

The target feature vector st can be obtained from a spectral library or
spectral samples in the given hyperspectral data. In the proposed algorithm
the target feature is created from the sample spectra via an ICA-based feature
extraction technique introduced in Section 4.4.

4.4 ICA-Based Feature Extraction

ICA, a relatively new concept in data representation, exploits high-order sta-
tistical dependencies among the data [11, 12, 13]. In this section, we introduce
the ICA mixing and unmixing models and an ICA-based feature extraction
technique. The feature extraction technique is based on the well-known ICA
unmixing process [12], designed to find a feature vector that can closely rep-
resent the target spectral characteristics of the given data.
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4.4.1 Independent Component Analysis (ICA)

Data representation in signal processing generally entails efficient removal of
correlations present in the data. Principal component analysis (PCA) [8] is
a well-known data transform technique that decorrelates the input data by
exploiting pairwise second-order dependencies (e.g., covariance) and produces
linearly independent variables, called principal components (or eigenvectors).
Because the eigenvectors are only linearly independent from one another, non-
linear (high-order) statistical dependencies of the input data — as can be
easily observed from sparse structures in an image, such as edges and small
areas with relatively high contrast — cannot be removed [18]. ICA is a gen-
eralization of PCA where the input data is expressed as a linear mixture
of statistically independent components which are nonlinearly decorrelated
[11]. The independent components are, therefore, highly nongaussian (e.g.,
the Laplace distribution) and well suited to represent the sparse structures of
the input data. We use ICA to better capture targets scattered in HYDICE
images, each target occupying a small number of pixels. Detailed information
on ICA and its applications for signal and image processing can be found in
[19, 11, 12, 13, 20, 21, 18].

Suppose we are given the data X, consisting of M input images; the
number of pixels in each image is N . Then X can be represented by an
M × N matrix [x1x2 · · ·xN ], each row, a N -dimensional vector, represent-
ing the corresponding input image. Each column xi = (x1, x2, . . . , xM )T is an
M -dimensional vector whose components are the pixel values of the M im-
ages at the corresponding pixel location i. We denote by S = [s1, s2, . . . , sM ]T

an M × N matrix, each row si
T , an N -dimensional vector, representing the

corresponding independent component image. The ICA mixing model is then
defined by

X = AS, (4.2)

where A = [a1,a2, . . . ,aM ]T represents the M × M mixing matrix, each row
ai

T , an M -dimensional basis vector, representing mixing coefficients that ac-
count for the abundances of the independent components for the ith input
image. Equation (4.2) indicates that any given input image can be expressed
as a linear combination of the independent component images whose abun-
dances are specified in the corresponding row of A. Figure 4.3 shows a simpli-
fied schematic diagram of the ICA mixing and unmixing processes. In order
to calculate A, we first estimate the unmixing matrix W of X using the basic
assumption of ICA — the statistical independence of the components. Let the
unmixing matrix W = [w1,w2, . . . ,wM ]T be the inverse of the mixing matrix
A. Equation (4.2) can then be expressed as

WX = S. (4.3)

Figure 4.4 illustrates how matrix multiplications in Equation (4.3) are per-
formed to unmix X. The unmixing process is basically a linear projection
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of X onto wi
T , i = 1, 2, . . . , M , which are the basis vectors (axes) in a new

coordinate system represented by Equation (4.3). wi
T are actually the or-

thogonal basis vectors, and the input images are realigned along wi
T to cre-

ate the corresponding ICA component images. The independent components
should be nongaussian, otherwise ICA cannot be achieved [11]. Accordingly,
the directions of wi

T are set such that nongaussianity of the ith independent
component si = wi

T X is maximized.

4.4.2 ICA-Based Target Feature Extraction

Sample reflectance spectra collected from the pixels in the target regions (the
targets in the scene are assumed to be the same kind) can be used directly to
estimate the target spectral signature, e.g., by averaging them. However, in
practice the material variations and different illumination conditions result in
a broad range of spectral variability, as shown in Figure 4.5. Therefore, the
individual spectra from the target regions, even from the same region, could be
different. In this context the arithmetic mean of the sample reflectance spectra
is not an adequate representation of the target spectral signature. We use an
ICA-based feature extraction technique that focuses especially on extracting
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Figure 4.5. Example of spectral variability of the target reflectance spectra.

the independent components that form the target. In this technique a small
hyperspectral cube is used to generate the target spectral feature vector.

Suppose we are given a relatively small hyperspectral cube X =
[x1x2 · · ·xN ], an M × N matrix, including the targets and the neighboring
backgrounds. Normally, before unmixing X two preprocessing steps need to
be taken — dimensionality reduction and whitening. Both the steps are based
on the eigenvalue–eigenvector factorization described in [11]. The number of
independent sources present in the data is closely associated with the intrinsic
dimensionality L of the input data. L can be successfully determined by find-
ing an optimum subspace of the input data, which is equivalent to a problem
of finding a number of eigenvectors to be retained. Important studies have
been performed to determine L based on probabilistic PCA models [9, 22].
We use the maximum likelihood PCA model introduced by Bishop [9] to cal-
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culate L. L is normally far smaller than M ; the input vectors in X are the
column vectors xi = (x1, x2, . . . , xM )T , i = 1, 2, . . . , N . L has to be known a
priori to decide how many independent components need to be created in the
unmixing process.

The dimensionality reduction of X is normally accomplished by projecting
X onto the first L eigenvectors of the covariance matrix of X. Whitening is a
process in which the input data are uncorrelated and their variances become
unity. Both the dimensionality reduction and whitening are performed by

Xs = U−1/2ET X, (4.4)

where Xs =[xs
1x

s
2 · · ·xs

N ], an L × N matrix, is the transformed input data
in the L-dimensional space, E is an L × M matrix, representing the first
L eigenvectors, and U is a diagonal matrix whose main diagonal elements
are the eigenvalues of E. The corresponding independent components Ss =
[ss

1, s
s
2, . . . , s

s
L] can be obtained by

WsXs = Ss, (4.5)

where Ws = [ws
1w

s
2 · · ·ws

L] is the unmixing matrix in the L-dimensional space.
Figure 4.6 illustrates the dimensionality reduction of the sample hyperspectral
cube and the associated ICA unmixing process.

Each independent component image represents a set of corresponding pro-
jection values si = wi

T X. The distributions of si are close to the Laplace dis-
tribution which has more pixels in tails and less pixels around the mean than
the Gaussian distribution. Therefore, edges and small areas with high contrast
are better represented by the independent component images. The structural
details of the small targets in the sample hyperspectral cube are detected
during the unmixing process, generating one or more ICA component images
with greater target prominence (See the ICA component inside the rectangu-
lar box in Figure 4.6). The target prominence is measured by calculating the
difference between the two values — the averages of the background pixels
and target pixels in the ICA component image. As shown in Figure 4.6, the
component images with higher target prominence include highly suppressed
background where the mean and variation in pixel values are generally low.
Once the component image with the highest target prominence ss∗ is found,
the corresponding ws∗T , the unmixing vector onto which Xs is projected to
create ss∗, is identified. The associated dewhitened vector of ws∗ is then ob-
tained by

g∗ = EU1/2ws∗. (4.6)

gi, i = 1, 2, . . . , L, are the column vectors of the mixing matrix A (gi are shown
in Figure 4.6). Each component of the M -dimensional vector g∗ accounts for
the abundance of ss∗ in the associated band image. Therefore, g∗ naturally
represents the spectral characteristics of the target relative to those of the
background in the given data. If the background spectral characteristics in
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test images are not substantially different from those of the training images,
we can apply g∗ as a spectral template to the test images. If the targets are
frequently situated among different background types, e.g., grass and soil,
we generate multiple spectral templates, each template being adapted to the
corresponding background type.

4.5 Subspace-Based Adaptive Target Classification

In this section, we estimate a low-dimensional subspace to address the back-
ground spectral variability. The subspace is spanned by a small number of
linearly independent vectors (eigenvectors) directly estimated from the back-
ground spectra. Each pixel spectrum is projected onto the orthogonal back-
ground subspace to remove the spectral contribution due to the background
materials. The target abundance of the pixel spectrum is then estimated by
adaptive template matching.
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4.5.1 Background Subspace Model

Suppose x = (x1, x2, . . . , xM )T is an M -dimensional vector, representing a
background reflectance spectrum. We denote by Cx the covariance matrix of
the vector population of x. M is equal to the number of spectral bands. We
estimate the low-dimensional subspace 〈B〉 spanned by first K eigenvectors
B = [b1,b2, . . . ,bK ] of Cx; K is equal to the dimension of the subspace
(K � M), and is set such that B accounts for most of the energy of the
original background space. The construction of 〈B〉 ensures that the most of
the spectral information from the input space is integrated into the compact
subspace with greatly reduced dimensionality.

4.5.2 Orthogonal Subspace Projection and Adaptive Spectral
Matching

Orthogonal subspace projection is a geometrical approach originally devised
to determine the least squares approximations to inconsistent linear algebraic
equations (or linear systems) [23]. It has also been used for hyperspectral tar-
get classification/detection applications [14, 16]. Because the pixel spectrum is
assumed to be a linear mixture of the target and the background constituent
spectra, and 〈B〉 is spanned by the key eigenvectors of the background co-
variance matrix, we can estimate the background portion Bc within the pixel
spectrum x by projecting x onto the background subspace 〈B〉, as shown Fig-
ure 4.7. The spectral contribution by the target and noise w is then estimated
by simply subtracting the background contribution PBx from x:

x − PBx = (I − PB)x, (4.7a)
= PB

⊥x, (4.7b)

where I is the identity matrix and PB = B(BT B)−1BT is a background
projection matrix, and PB

⊥ is an orthogonal projection matrix. For every
pixel, adaptive template matching is performed to estimate the correlation
between the target spectral contribution PB

⊥x within the pixel spectrum
and the target spectral template g∗T , which was obtained from Section 4.4.2:

F (x) = g∗T PB
⊥x. (4.8)

The pixels with higher values of F (x) than a predefined threshold are then
classified as the target.

4.5.3 Localized Background Subspace

The background subspace is estimated based on the sample spectra collected
from various terrain types in the hyperspectral training images. Successful
subspace modeling ensures robust and enhanced classification performance.
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Collecting the background spectra from the training images is normally per-
formed by a human operator. Figure 4.8 shows the various background regions
from which the sample spectra were collected. However, human intervention
in a target classification process often results in inconsistent performance. It
can be eliminated by replacing it with an automated procedure, in which the
background subspace is estimated using the sample spectra directly collected
from the hyperspectral sensor. In this section we introduce an unsupervised
segmentation technique developed by the authors [24] to estimate the back-
ground subspace adapted to the local characteristics of the hyperspectral test
images. In the technique the reflectance spectra in the test images are first
segmented into two classes based on spectral dissimilarity.

The spectral dissimilarity is measured within a local window. A relatively
large fixed-size local window is placed around each pixel. Note that each pixel
corresponds to a pixel vector (spectrum) in the spectral domain. The spectral
dissimilarity di associated with pixel location i is defined as

di =

∑
j∈B ‖sj − si‖

Ni
, (4.9)

where ‖ ·‖ represents the Euclidean norm, B represents a set of pixels selected
randomly from within the local window, as shown in Figure 4.9. The vectors
si and sj represent the corresponding pixels at locations i and j, respectively,
and Ni represents the number of the selected pixels (the randomly selected
pixels and neighboring pixels) required to estimate di. After the spectral dis-
similarity of every pixel is obtained, a spectral dissimilarity image D is formed,
as shown in Figure 4.10. Each element of the image represents the amount
of the average spectral difference between the center pixel and its randomly
selected neighbors. The spectral dissimilarity image provides a set of spectral-
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Figure 4.8. Sample background spectra from the hyperspectral images to esti-
mate the sample-based background subspace; the samples were collected from the
rectangular regions.

feature values di suitable for clustering. The pixels in the targets regions tend
to have greater values than those of the background pixels, because of the
spectral difference between the two material types. The pixels associated with
smaller di are then identified as the background whose spectra are used to
estimate the background subspace. Segmentation is performed by applying a
simple thresholding method to the feature values in D whose statistics are
closely associated with the contents of the HYDICE images — mainly the
complexity of the backgrounds. The threshold is calculated by averaging the
mean and the maximum value of D.
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Figure 4.10. Spectral dissimilarity image D of the small hyperspectral cube.

4.6 Experimental Results

In this section we apply the proposed ICA-based adaptive matching technique
to the HYDICE images to detect targets of interest. The HYDICE imaging
sensor generates 210 band images across the whole spectral range (0.4–2.5
µm), each band covering a narrow spectral range of 10 nm. We, however, use
only 150 band images by discarding water absorption and low signal-to-noise
ratio (SNR) bands; the band images used are the 23rd–101st, 109th–136th,
and 152nd–194th. The low SNR bands were identified by human observation of
sample spectra. The test cubes were provided with the associated ground truth
maps. The coordinates of the centers of the targets in the ground truth map
were compared with those of the detected targets to check if the classification
was accurate.
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4.6.1 Target Feature Extraction

Figures 4.11–4.13 show typical reflectance curves from the regions of the dis-
parate material types, such as targets, trees, and grass. Even though a distin-
guishable spectral pattern can be found among a group of reflectance curves
of the same material type, a wide range of spectral variability, prevailing in all
the material types, hinders correct and accurate classification of the targets
from the surrounding backgrounds. In particular, the reflectance curves from
the target region, as shown in Figure 4.11, display substantial intraclass vari-
ability, showing how seriously material variations and different illumination
conditions interfere with the hyperspectral target classification process.
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Figure 4.11. Spectral variability in the target region.

In order to estimate the target abundance within the individual pixel spec-
tra, we generate a spectral feature vector, used as a correlation template in
the classification process, to represent the target spectral characteristics in
the given data. Two methods are used to create the spectral feature vector
— mean curve generation and ICA-based feature extraction. We compare
the target classification performance associated with the two feature genera-
tion methods. Figure 4.14 shows the sample target spectral reflectance curves
and the corresponding mean spectral curve mT

t . The ICA-based spectral fea-
ture extraction technique, based on [20], uses a set of training images X =
[x1x2 · · ·xN ] which are usually a small-sized hyperspectral cube with the sin-
gle background type, as shown in Figure 4.6. The intrinsic dimensionality L
of the input vectors xi (the pixel spectrum vector) was obtained based on
the maximum likelihood PCA model [9]; L was 5 instead of 150, meaning
that the column vector xs

i , i = 1, 2 . . . , N , are in the 5-dimensional space,
and there exists not more than five independent sources in the training im-
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Figure 4.12. Spectral variability in the tree region.
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Figure 4.13. Spectral variability in the grass region.

ages. Figure 4.6 shows the training images X and a schematic diagram of
the ICA unmixing process, in which the training images are decomposed into
the five ICA component images. In the unmixing process the first five princi-
pal component images Xs were actually used to calculate the corresponding
ICA component images. The direction of each of the five unmixing vectors
ws

i
T , i = 1, 2, . . . , 5, was set such that nongaussianity of the corresponding

ICA component ss
i was maximized. The 150-dimensional vectors gi were then

obtained by first dewhitening ws
i and then projecting them back to the orig-

inal measurement space. The ICA component image with the highest target
prominence ss∗ and its associated basis vector g∗T are shown in Figure 4.15.
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Figure 4.14. (a) Sample target reflectance curves and (b) the corresponding mean
curve mT

t .

g∗T is used as a target spectral template in the target classification process
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Figure 4.15. (a) ICA component image with the highest target prominence and
(b) its corresponding basis vector g∗T .

to measure the significance of the target contributions within the individual
background-removed pixel spectra. The spectral shape of g∗T is quite differ-
ent from that of mT

t . This is because the direction of g∗T is set such that it
suppresses the background spectra, while emphasizing the target spectra. mT

t ,
in contrast, is generated only to detect the target spectra, regardless of the
spectral characteristics of the backgrounds of the given hyperspectral data.
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4.6.2 Background Subspace Estimation

Figure 4.16 shows two hyperspectral band images, each from either of the
two hyperspectral cubes, Cube I and II, to be used as test images for target
classification. Cube I includes five targets (four vehicles and one man-made

(a) (b)

Figure 4.16. Sample band images from two hyperspectral test cubes, (a) Cube I
and (b) Cube II.

object) and two different types of background (trees and grass). Cube II is
smaller than Cube I in size and includes three targets (all of them are vehicles)
and the single background type of grass.

We first estimate the background subspace to remove the background por-
tion from every pixel spectrum in the test cubes. Two different techniques
were used to estimate the background subspace: localized subspace estima-
tion and sample-based subspace estimation. In order to estimate the localized
subspace 〈Bl〉, we first apply the unsupervised segmentation, described in Sec-
tion 4.5.3, to the corresponding hyperspectral test cube. For each test cube,
〈Bl〉 is spanned by the first eight eigenvectors of the covariance matrix of the
pixel spectra in the regions classified as the background.

Figure 4.17 shows the spectral dissimilarity matrices and unsupervised
segmentation results for the two test cubes. The size of the local sliding win-
dow was half the size of the test image. We used 80 randomly selected pixels
and four neighboring pixels of the corresponding input pixel in the local win-
dow to estimate the spectral dissimilarity. A simple threshold-based technique
was used to segment the dissimilarity matrices. The segmentation of Cube II
was successful since most of the background areas were segmented out of the
image. Cube I includes more diverse backgrounds than Cube II. In the seg-
mentation of Cube I the area covered by grass was successfully classified as
background, while most of the tree regions were not. This is mainly because
of the irregular spectral reflectivity of the tree regions. Accordingly, for Cube
I most of the background spectra used to estimate the localized subspace were
collected from the grass areas.

The sample-based background subspace 〈Bs〉 was estimated for both the
test cubes based on the sample spectra collected from various types of the
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(a) (b)

(c) (d)

Figure 4.17. Spectral dissimilarity images for (a) Cube I and (b) Cube II and the
corresponding segmentation results for (c) Cube I and (d) Cube II.

backgrounds in the hyperspectral training images (inside the rectangular boxes),
as shown in Figure 4.8; the same number of eigenvectors used to estimate 〈Bl〉
was used to estimate 〈Bs〉. It should be noted that modeling of 〈Bs〉 involves
a human operation, incurring inconsistent classification performance.

Once 〈Bl〉 and 〈Bs〉 are estimated, the associated orthogonal projection
matrixes PBl

⊥ and PBs

⊥, respectively, are readily calculated. Figure 4.18
shows three band images from Cube I and their corresponding background-
removed images, in which the background portion of every pixel spectrum
is discarded by projecting the pixel spectrum x onto PBl

⊥ and PBs

⊥. The
background removal was quite successful for both the subspace estimation
methods. The localized subspace estimation is preferable for the given test
cubes because it provides comparable performance to that of the sample-
based method and allows automated target classification. However, as HY-
DICE images include increasingly complex backgrounds (e.g., urban areas),
the dissimilarity measure for the localized subspace estimation fails to work
properly because of a high level of the spectral dissimilarity inside the back-
ground. In general, the choice between the sample-based and the localized
subspace estimations needs to be made in the context of background com-
plexity. Therefore, it is necessary to further develop an appropriate measure
of the background complexity for hyperspectral imagery as future work.
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Figure 4.18. Example of the background-removed images based on the localized
and sample-based subspace estimation. The images in the first column are the three
band images from Cube I. The images in the second and third column are the
corresponding background-removed band images based on PBl

⊥x and PBs
⊥x, re-

spectively.

4.6.3 Adaptive Target Classification

After removing the background portion from every pixel in the hyperspectral
test cube, we estimate the target abundance within the pixel spectrum by
calculating mT

t PB
⊥x and g∗T PB

⊥x; mT
t and g∗T serve as the target spec-

tral templates. Quantitative performance of the proposed algorithm, such as
the receiver operating characteristic (ROC) curves, was not evaluated mainly
because of a lack of HYDICE images. Figure 4.19 shows the target abundance
images and the corresponding classification results for Cube I and Cube II us-
ing the mean-based spectral template mT

t , which is shown in Figure 4.14. The
sample-based background subspace 〈Bs〉 was used in the mean-based target
classification. Because the mean curve cannot inherently address a wide range
of spectral variability of the target, only partial targets were detected for both



136 Heesung Kwon et al.

(a) (b)

(c) (d)

Figure 4.19. Target classification based on the mean-based spectral template and
the sample-based subspace estimation. (a) Target abundance image and (b) classifi-
cation results for Cube I. (c) Target abundance image and (d) classification results
for Cube II.

the test cubes. Figures. 4.20 and 4.21 show the target abundance images and
the corresponding classification results using the ICA-based spectral template
g∗T for both the sample-based and the localized background subspace mod-
els, respectively. A complete set of the targets was successfully detected for
both the subspace models, demonstrating the superiority of the ICA-based
classification over the mean-based technique.

(a) (b)

(c) (d)

Figure 4.20. Target classification results based on the ICA-based spectral template
and the sample-based subspace estimation. (a) Target abundance image and (b)
classification results for Cube I. (c) Target abundance image and (d) classification
results for Cube II.
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(a) (b)

(c) (d)

Figure 4.21. Target classification results based on the ICA-based spectral template
and the localized subspace estimation. (a) Target abundance image and (b) classifi-
cation results for Cube I. (c) Target abundance image and (d) classification results
for Cube II.

The ICA-based target classification without background removal from the
individual spectra was also applied to the test cubes by calculating g∗T x. The
experiments were performed to find how significantly the background removal
process contributed to the target classification process. The projection g∗T x
was not able to suppress the background portion within the pixel spectra,
drastically increasing the false classification in the background regions, as
shown in Figure 4.22.

4.7 Conclusions

We have presented a two-class target classification algorithm, in which an
individual pixel spectrum is linearly decomposed into constituent spectra and
then labeled either target or background. The background and target spectral
characteristics are represented by the low-dimensional background subspace
and the target feature vector generated by the ICA-based feature extraction,
respectively.

The background subspace model has been used to address a wide range
of spectral variability by integrating key spectral features of various terrain
types into the low-dimensional subspace. In order to fully automate the target
classification process, the localized background subspace model has been also
developed, in which the eigenvectors spanning the subspace are calculated
based on the reflectance spectra directly from the background regions of the
test images. Unsupervised segmentation based on the spectral dissimilarity is
applied to the test images to identify the potential background regions. In our
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(a) (b)

(c) (d)

Figure 4.22. Target classification results without background removal. (a) Target
abundance image and (b) classification results for Cube I. (c) Target abundance
image and (d) classification results for Cube II.

experiments, the localized and sample-based subspace models in the proposed
classification technique provides comparable classification performance.

The background portion is removed from each pixel spectrum by project-
ing it onto the orthogonal background subspace. The background removal pro-
cess greatly improves target classification performance, as supported by the
simulation results. The abundance of the remaining target spectral portion
is estimated by measuring the correlation between the background-removed
individual pixel and the target template to identify the intrinsic spectral na-
ture of the corresponding pixel surface. The target features obtained by both
the ICA-based and mean-based feature extraction techniques are used as the
target spectral templates. The nonlinear data structures of the targets are
exploited by the ICA-based feature extraction. Consequently, ICA-based fea-
ture extraction results in better classification performance than mean-based
extraction.

Due to the lack of HYDICE images available for experiment, only the
qualitative performance was evaluated. In order to further investigate the
usefulness of the proposed algorithm, a quantitative performance measure
such as the ROC curve needs to be calculated using a larger data set that
includes blind test images.

The types of paint used for the targets in our data set is unknown (it
may be the three-color camouflage paint). Analysis of the spectral character-
istics of different types of paint on the surface of military targets is desirable
and needs to be conducted as future work. It will help develop robust tar-
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get detection/classification methods that can be used in various battlefield
environments, e.g., wooded (and/or grassy) areas and barren desert.
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Chapter 5

Moving Object Detection and Compression in
IR Sequences �
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Summary. We consider the problem of remote surveillance using infrared (IR) sen-
sors. The aim is to use IR image sequences to detect moving objects (humans or
vehicles), and to transmit a few “best-view images” of every new object that is
detected. Since the available bandwidth is usually low, if the object chip is big, it
needs to be compressed before being transmitted. Due to low computational power
of computing devices attached to the sensor, the algorithms should be computation-
ally simple. We present two approaches for object detection — one which specifi-
cally solves the more difficult long-range object detection problem, and the other
for objects at short range. For objects at short range, we also present techniques
for selecting a single best-view object chip and computationally simple techniques
for compressing it to very low bit rates due to the channel bandwidth constraint.
A fast image chip compression scheme implemented in the wavelet domain by com-
bining a non-iterative zerotree coding method with 2D-DPCM for both low-and
high-frequency subbands is presented. Comparisons with some existing schemes are
also included. The object detection and compression algorithms have been imple-
mented in C/C++ and their performance has been evaluated using the Hitachi’s
SH4 platform with software simulation.

5.1 Introduction

Remote monitoring of activities of stationary or moving vehicles and humans
is a critical component in surveillance applications. The sensors used in prac-
tice are typically of low quality and the available bandwidth for transmission
is quite limited. We consider the problem of remotely monitoring a battlefield
with IR sensors and present two approaches for object detection. The first ap-
proach is useful when the objects are at large distances, are very small, appear
� Prepared through collaborative participation in the Advanced Sensors Consor-

tium sponsored by the U.S. Army Research Laboratory under the Collaborative
Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0008. The
U.S. Government is authorized to reproduce and distribute reprints for Govern-
ment purposes, notwithstanding any copyright notation thereon.
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to move slowly, and their signatures have low contrast over the background.
In such cases, traditional methods based on the analysis of the difference
between successive frames and/or image and background or image intensity
change will not work. We present a novel algorithm (referred to as the MTI
algorithm) based on variance analysis which is useful at long ranges, when
the object is small and slowly moving. The algorithm uses temporal variance
to detect potential moving spots, spatial variance analysis to suppress false
alarms caused by sensor vibration, and object geometrical constraints to filter
out false alarms caused by tree branches and sensor noise.

In other scenarios, when the objects are not so far away, the problem of
moving object detection is formulated as one of segmenting an image function
using a measure of its local singularity as proposed in [1]. When the detected
objects are very small (see Figures. 5.1, 5.2), all views are equally good or bad
and hence the problem of best-view selection becomes irrelevant. Also, since
the object chip is already very small, compression is not necessary and hence
any chipped image of the object can be transmitted. Thus, in such cases all the
computational power available on the sensor can be used to solve the object
detection problem. When the object chips are larger so that over time the
object pose changes, we choose one best-view of the object, compress it using
computationally simple techniques and then transmit the compressed best
view chip. The challenge here is to solve the best view selection problem and
to develop techniques which can compress the image to very low bit rates and
are yet computationally simple since they have to be implemented in realtime
and on hardware with limited computing power. Note that in this work, we
do not study techniques for channel coding since we assume a reliable channel
is available for transmission.

Performance evaluation of algorithms is critical for determining the mem-
ory and computation needs of the algorithm. We present these measures for
the algorithms using the Hitachi’s SH-4 microprocessor.

The rest of the chapter is organized as follows. Section 5.2 describes the
MTI object detection algorithm for long-range, small-size object detection
along with results followed by the technique for detecting short-range and
larger objects. Section 5.3 describes techniques for best-view selection for large
objects. Section 5.4 discusses compression techniques for real-time, low-power,
and very low bit rate compression of object chips. Simulations results on SH4–
7751 microprocessor for performance characterization are presented in Section
5.5 and conclusions in Section 5.6.

5.2 Object Detection

We present two object detection algorithms, the first one deals with the more
difficult problem of long-range object detection when objects are very small
and the second one for detecting objects at short range.
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5.2.1 Long-Range Object Detection (MTI)

Techniques based on optical flow and image intensity analysis may not work
well for long-range object detection. In typical scenarios, a moving object size
can be as small as 2×3 pixels and the motion between two adjacent frames can
be less than 0.1 pixels. Several challenging issues need to be addressed. The
first challenge is to compensate for sensor motion using electronic stabiliza-
tion methods. Over the years, two dominant approaches have been developed
— flow-based and feature based. The feature-based methods extract point,
edge or line features and solve for an affine transformation between successive
frames, while the flow-based methods compute optical flow and then estimate
an affine model. These methods do not perform well in IR images as feature
extraction in IR images is not reliable, and flow estimates for IR images suf-
fer from severe bias due to noise. Also, these methods are too complex for
real-time computation. Even if stabilization can be solved using one of these
approaches, the problem of separating moving objects from the stabilized
background is challenging due to low signal-to-clutter ratio in surveillance
applications. Other factors that complicate the problem are changes in the
background as the sensor is panning, false motion detection due to atmo-
spherics, and other confusing motion (motion of tree leaves, etc).

We assume a stationary sensor. The proposed algorithm uses a variance
analysis based approach for moving object detection that can effectively inte-
grate the object motion information over both temporal and spatial domains.
Each input frame is first checked for possible errors and then used to update
the temporal variance. When the variance for a pixel increases above a given
threshold, the pixel is labelled as corresponding to a potential moving ob-
ject. All candidate-moving pixels are then grouped to form disjoint moving
objects. The detected potential moving objects (regions) are verified for their
size, shape, and orientation to filter out false detection. After false detection
verification, the remaining change regions are reported as moving objects.

The temporal variance at a pixel (i, j) at frame k is computed as

σ2
i,j,k = Si,j,k − µ2

i,j,k, (5.1)

where
Si,j,k =

1
L

f2
i,j,k +

L − 1
L

Si,j,k−1, (5.2)

µi,j,k =
1
L

fi,j,k +
L − 1

L
µi,j,k−1, (5.3)

Si,j,1 = f2
i,j,1, (5.4)

µi,j,1 = fi,j,1. (5.5)

Here, fi,j,k is the image value at frame k and location (i, j) and L is the
temporal window parameter. A pixel is detected as belonging to potential
moving object if the following conditions are satisfied:
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σ2
i,j,k ≥ σ2

i,j,k−1, (5.6)

σ2
i,j,k ≥ T0(i, j) + Th, (5.7)

or

σ2
i,j,k ≥ σ2

i,j,k−1, (5.8)

σ2
i,j,k ≥ T0(i, j) + Tl, (5.9)

max
−1≤δx≤1,−1≤,δy≤1

σ2
i+δx,j+δy,k ≥ T0(i, j) + Th, (5.10)

where

T0(i, j) = max
−2≤δx≤2,−2≤δy≤2

|fi+δx,j+δy,0 − fi,j,0|, (5.11)

σt = vari,j∈N×N (T0(i, j)), (5.12)
Th = γh × σt, (5.13)
Tl = γl × σt. (5.14)

In our experiments, we set γh = 3.4, γl = 0.8 ∗ γh, and L = 16.

5.2.2 MTI Algorithm Results

Figure 5.1 shows the object detection result for frame 200 and 300 on an IR
sequence (IRseq10) for the case of people walking at a long distance. Even
though the width of the objects (people) is 2 to 3 pixels, the algorithm cor-
rectly detects and tracks them. In this sequence, the sensor was stationary
and its direction was fixed. Figure 5.2 shows the detection of a moving vehicle
for frames 160 and 250. In this case the sensor pans and stops and is quickly
able to find the object again. Hence, the algorithm is capable of recovering
after sensor panning motion.

As a comparison with background subtraction techniques, Figure 5.3 shows
the result using background subtraction based on nonparametric background
modelling [2] on IRseq10. We can see that there are a lot of false detec-
tions whose sizes are the same or even greater than the object size. So, the
objects cannot be detected reliably. Also background subtraction techniques
need some number of frames for background modelling before they can start
the detection process. Figure 5.4 shows the ROC curve for the MTI algorithm
for different IR sequences for γh varying from 3.0 to 5.5. The detection per-
centage is calculated as the ratio of object detections in all frames and the
total objects actually present in all frames. The false alarms percentage is
calculated as the ratio of the false alarms in all frames and the total objects
in all frames. Since we do not have ground truth, it was generated manually
as follows. For all the sequences considered, the objects are far away and are
moving approximately parallel to the image plane with uniform speed. The
objects locations were hand-picked every thirty frames and are interpolated
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Figure 5.1. Object detection: Frames 200 and 300 of IRseq10 along with detected
objects.

Figure 5.2. Frames 160 and 250 of a moving vehicle IR sequence along with detected
objects (sensor recovering after panning motion).

in between assuming constant object velocity. Table 5.1 shows the effect of
parameter L on detection rates and false alarms for different sequences.

The MTI algorithm has been implemented on a Dual Pentium 550-MHz
personal computer. It can perform moving object detection for 974×436 image
sequences at a sustained rate of 12 frames per second (including reading data
from the hard drive and sending image to a video display). The algorithm has
been tested on fourteen 974 × 436 × 3600 sequences with objects at various
distances, moving speeds, moving directions, and motion patterns, and with
different numbers of moving objects. From the ROC curves (Figure 5.4) and
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Figure 5.3. Detection result using background subtraction on IRseq10.
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Figure 5.4. ROC curve for the MTI algorithm for different IR sequences.
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Table 5.1. Effect of parameter L on detections and false alarms for various IR
sequences.

Sequence L Detections(%) False Alarms(%)

IRSeq1 8 98.33 13.8
IRSeq1 16 99.83 28.3
IRSeq9 8 97.70 2.24
IRSeq9 16 97.70 0.05
IRSeq2 8 99.80 32.09
IRSeq2 16 99.60 57.33

Table 5.1, we see that the MTI algorithm gives good results (high detection
rate and very low false alarm rate) on almost all of the test sequences with
no running parameters to be adjusted.

5.2.3 Short-Range Object Detection

The problem of object detection is formulated as one of segmenting an im-
age function using a measure of its local singularity as proposed in [1]. The
method combines the problem of stabilization, object detection, and tracking
into a single process when interframe motions are restricted to lateral trans-
lations or tilts and scale changes, and has the advantage of exploiting these
sensor motion constraints for performing simultaneous activity detection and
stabilization. The algorithm makes use of the Holder exponent of a hybrid ca-
pacity (derivative of Gaussian along the X- and Y- axis). Using this measure,
Lipschitz signatures which reflect the singularity of the image function along
each spatial axis are defined. The Lipschitz signatures are used for detection
and tracking of objects. The proposed measure is obtained by applying the
operators Gx,σ and Gy,σ to the images which are the derivatives of the Gaus-
sian applied along the x- and y- axes, respectively. The Lipschitz signatures
can then be defined as the projection of the these measure along the x- and
y- axes. The main assumption of the algorithm is that the “active regions” of
the image exhibit some higher level of singularity in the Lipschitz signatures.
In other words, the singularities can be detected and tracked over time. The
algorithm is robust to image scale variations and can handle multiple moving
objects. It also involves projection along spatial axis and hence can be done
in real time. Spatio-temporal information on the objects in the scene can also
be inferred.

5.3 Best View Selection

As mentioned earlier, the best-view selection is not required when the detected
object chip is small (few pixels), but becomes important in case the object
chip is large and the object pose changes from time to time.
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Three different techniques were tried for best-view selection. We work on
the assumption that the side view is the “best view” since it has most of the
identifiable features (See Figure 5.5). Eigenspace classification has successfully
been used for pose detection [3] and face recognition applications [4, 5]. In the
first approach, we formulate the best-view selection problem as a pose match-
ing problem in eigenspace. Another approach to best-view selection would be
to wait while the object size keeps increasing (it is approaching the sensor)
and transmit the largest-sized image or transmit the last frame before the ob-
ject takes a turn. This can done by estimating the focus of expansion (FOE)
which can be used to calculate the velocity direction. Since both techniques
mentioned above are computationally intensive, they are not suitable for real-
time hardware implementation. The eigenspace technique also suffers from
the drawback that it is not generalizable, i.e., to use it for a different type of
vehicle would require a new training phase. It works well only when similar
objects are available in its training database. Hence, the third approach, a
size-based detection method, was finally implemented. In what follows, we
describe these techniques in detail.

5.3.1 Eigenspace Classification

This technique is useful for best-view selection when there are multiple sensors
capturing an object from different orientations and a database of multiple
views of the object is available. In our experiments we have used multiple
views of tanks taken from different directions. A view closest to the side view
is classified as the best view.

Figure 5.5. Tank2 (side view).

Algorithm

Construct an eigenspace using images of tanks in various orientations. Place
the camera at 45-degree spacings around the tanks to obtain eight possible
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views of each tank. Obtain the mean image of each of the eight orientations and
save its coordinates in eigenspace. For a query image, classify it in eigenspace
and calculate the distance from each of the orientations using a distance met-
ric.

Since the required data for doing this was not available, we constructed
an eigen-space using all the tank images available and obtained class means
corresponding to front, side and back views. On classification of a query image,
it got mapped to the correct class most of the times.

Eigenspace Construction

Instead of directly obtaining the eigenvectors of an N2×N2 covariance matrix,
the first M (M is the number of training vectors) eigenvectors can be obtained
by first calculating the eigenvectors of an M × M covariance matrix of the
transpose of the image data and then obtaining the image eigenvectors by
taking linear combinations of the training images weighted by the eigenvector
component as described in [4, 5, 6].

Scale and Intensity Invariance

Since eigenspace classification is sensitive to scale variations, all images were
scaled down to a fixed size before classifying and since the image chip con-
tained the tank only, scaling down the image to a fixed size implied obtaining
the tank image of a fixed size. Both for eigenspace construction and classifi-
cation, the images were normalized by their total energy.

Distance Metrics

The distance metric can either be the simple Euclidean distance (ED) or the
distance along each component normalized by the corresponding eigenvalue
(ND). The latter gives better results since it gives more weight to those di-
rections where the noise variance is lower.

A better solution is to obtain variance along each component in each class
and calculate the distance from a particular class using those eigenvectors
which have low variance in that class but overall high variance in eigenspace.
For scaling the distance from class k, the variance in class k is used rather
than the global eigenvalue for scaling. In this way, the intraclass variance can
be suppressed while the interclass variance can be emphasized. We call this
measure the class normalized distance (CND). All the three distance metrics
for some sample images are tabulated in Table 5.2. It can be seen from the
results that the CND is the best metric for classification for the reason stated
above.
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Table 5.2. Eigenspace Classification Results

Class Class Normalized Euclidean Normalized
Distance(CND) Distance(ED) Distance(ND)

tank2 4 10 24
tank6 15 20 35
tank9 15 19 28
btank12 30 44 56
sftank5 17 21 31

5.3.2 Focus of Expansion Estimation

The focus of expansion is the point in the image sequence of a moving body
from which all the motion vectors appear to diverge. The FOE may not always
lie inside the image boundary. Mathematically, the FOE(Xf ,Yf ) is defined as

Xf =
Tx

Tz
, (5.15)

Yf =
Ty

Tz
, (5.16)

where Tx,Ty, Tz are the translational motion vectors. Therefore, assuming the
ground is the X-Z plane, the direction of motion (velocity angle) of the tank
is given by

θ = tan−1 Vx

Vz
= tan−1 Tx

Tz
= tan−1 Xf . (5.17)

A modification of the partial search technique for FOE estimation developed
by Srinivasan in [7] was used. The equations to be solved are

u(x, y) = −(x − xf )h(x, y) + xyωx − (1 + x2)ωy + yωz, (5.18)

v(x, y) = −(y − yf )h(x, y) + (1 + y2)ωx − xyωy − xωx, (5.19)

where u(x, y) and v(x, y) are the optical flow estimates at (x, y), xf , yf are
the x and y coordinates of the FOE in the image(pixel) coordinates, h(x, y)
is the inverse of the depth at point (x, y) and ωx, ωy, ωz are the x-, y-, and
z- direction rotations. The FOE estimation algorithm requires calculation of
the optical flow which is done using the overlapped basis functions technique
developed by Srinivasan and Chellappa [8]. The FOE in the world coordinates
is given by

Xf =
xf + xoffset − (N − 1)/2

f
(5.20)

which is used for direction of motion calculation in (5.17).
In the modified partial search FOE estimation technique, we use only the

optical flow estimates of the part of the image containing the moving object
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since the flow estimates of the background are unreliable. Since the size of the
image for which optical flow is available is smaller, the FOE is also searched
over a smaller region. This speeds up the FOE calculation. Also, the FOE
estimate of the previous frame can be used to select an initial offset for the
FOE in the current frame to speed up the FOE calculation over successive
frames. The direction of motion is estimated at regular intervals and we keep
waiting if the tank is approaching towards the camera. The frame at which
the tank takes a turn away from the camera or the tank’s size increases above
a certain threshold could be chosen as the “best view” in this approach.

5.3.3 Size-Based Best-View Selection

Since the application requires best view selection and compression to be done
in realtime on hardware with low computing power, we need very simple tech-
niques for best-view selection. Thus, the final algorithm that was implemented
simply waits till the size of the image chips exceeds a predefined threshold. If
the size starts decreasing, it simply chooses the maximum size frame in the
last 90 frames and sends it. Actually a single frame buffer is used to store
the maximum sized chip in the last few frames, and as soon as the size starts
decreasing or increases beyond the threshold the stored frame is compressed
and transmitted. The algorithm rejects chips which are very close to the image
boundary (the tank may not be complete). Spurious frames (produced as a
result of wrong object detection) are also rejected based on thresholding the
height-to-width ratio.

5.3.4 Best-View Selection Results

In this section, we present the results of best-view selection using the three
approaches discussed above.

Eigenspace Classification

An eigenspace of front, side, and back views of various tanks is constructed
and the class means for each class are precalculated. In Table 5.2, results for
distances from the perfect side view (“tank2”) class are shown.

Figure 5.6 shows the mean image of the tank2 class. The distance of a
query tank2 image (side view, see Figure 5.5) is a minimum. Distance of
tank6 (side-back view) shown in Figure 5.8 is higher than tank2 but lower
than tank12 (back view) shown in Fig. 5.7. Hence tank2 is the “best-view” in
this case. As can be seen from Table 5.2, the CND (class normalized distance)
has the maximum variation (4 for perfect side view and 30 for back view),
and thus it is the best metric for classification among the metrics used.

The eigenspace classification is not a very good method for best-view se-
lection because it is sensitive to the lighting conditions, the type of IR sensor
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Figure 5.6. Mean image of the itank2 class.

Figure 5.7. Query image 3: tank12 (back view).

Figure 5.8. Query image 2: tank6 (back-side view).

used, and to the scale of the image. If the actual sensor is different from the
sensor used in the database, classification could fail. Moreover a very large
database of tank images in various poses is required for a robust eigenspace
construction which may not be feasible.

Focus of Expansion Estimation

The FOE estimation algorithm was run on IR video sequences of the tanks.
Since most of the tanks are moving almost horizontally in front of the camera
in the test sequences, the FOE values are very large (tending to infinity). The
FOE in pixel coordinates for a sample sequence is shown in Table 5.3.
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Table 5.3. FOE estimates using the optical flow shown in Figure 5.10.

Frame No. FOEx FOEy

121 −244 145
123 −369 152
125 −201 140
127 −253 136
129 −553 110
131 −583 110

5.9.
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Figure 5.9. Optical flow estimate of a typical frame (125) for FOE Estimation.

The optical flow estimate for the full frame 125 is shown in Figure The
region of significant motion that is segmented out and used for FOE estimation
finally is shown in Figure 5.10. The FOE estimation technique is not very
suitable for our application because both optical flow calculation and FOE
estimation are computationally intensive. Also for the IR images, the optical
flow estimates are not very accurate and as a result the FOE estimates are
also not accurate enough.

Size-Based Best-View Selection

Figure 5.11 shows a best view selected by this approach.
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Figure 5.10. Segmented optical flow estimate for frame 125 which is finally used
in FOE estimation (magnified view).

Figure 5.11. Size-based best-view selection.

5.4 Compression

For long-range objects, since the detected image chip is already very small,
compression is not really necessary. Also since the object chip contrast can
be very low compared to the background, it is preferable to just transmit the
binary image of the object (instead of transmitting a grayscale one) which
itself provides an 8 : 1 compression ratio. If more computational power is
available, the binary image could be compressed by run-length coding else
just the raw bits can be transmitted.

For objects at short range (which are large), the image chip chosen by the
“best-view selection” algorithm has to be compressed before transmission.



Chapter 5 Moving Object Detection and Compression in IR Sequences 155

Since the available channel bandwidth is low, we have tried to develop com-
pression schemes which can provide very high compression ratios while at the
same time maintaining a reasonable image quality. Since the algorithm is to
be implemented in real-time using limited computing hardware, the compu-
tational complexity should be low. We have developed realtime algorithms for
image compression in the wavelet domain. We first provide a background of ex-
isting image compression schemes and discuss the theoretical background for
wavelet transforms and the compression techniques. Following that, we discuss
the compression schemes implemented and compare against other techniques.
We compare our scheme, combined zerotree and DPCM coding, against three
existing schemes all of which have low computational complexity, viz. scalar
quantization (SQ), zerotree coding, and DPCM coding. The more efficient
compression schemes like JPEG and LZW are not compared here because
they have a much higher computational cost associated with their implemen-
tation. We then provide a performance analysis of the coding schemes. Finally,
experimental results are provided followed by computational cost analysis. We
use PSNR (peak signal-to-noise ratio) which is a standard metric for image
compression schemes to compare decompressed image quality.

5.4.1 Previous Work

A wavelet zerotree coding scheme for compression is presented in [9], but since
it uses vector quantization (VQ), it cannot be used for our application due
to high computational cost. Reference [10] presents an embedded predictive
wavelet image coder. But it uses arithmetic coding which is not suitable for
implementation on a embedded processor such as Hitachi’s SH4. So we have
developed algorithms using the Haar wavelet transform followed by nonitera-
tive zerotree coding [9] and 2D-DPCM for all subbands. The computational
complexity of these algorithms is only marginally higher than simple scalar
quantization (SQ) of the entire image.

5.4.2 Wavelet Transform Properties

The wavelet transform is an atomic decomposition that represents a signal in
terms of shifted and dilated versions of a prototype bandpass wavelet function
and shifted versions of a low-pass scaling function. In discrete time, the band-
pass wavelet function is a high-pass filter at different scales and the scaling
function is a low-pass filter. The image is low-pass and high-pass filtered first
along rows and then along columns to generate LL, LH, HL, and HH images
each of which is subsampled by two. This process is repeated on the sub-
sampled LL image. The wavelet transform has the following properties which
make it suitable for compression.

• Multiresolution: The image is decomposed into wavelets at N scales, and
only the top few coarsest scales need to be transmitted to obtain a reason-
able image quality. Depending on the available channel bandwidth, more
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finer scale coefficients can be transmitted to improve the reconstructed
image quality.

• Entropy Reduction: The wavelet transform of a real image generates a large
number of small coefficients (which can be set to zero) and a small number
of large coefficients which can be encoded. This property is based on the
fact that a real world image will not have information in all frequencies
at all points in space. At most points except edges, the higher-frequency
information is almost zero.

• Clustering and Persistence: The wavelet transform attempts to decorre-
late the image, but the decorrelation is not complete (since the filters are
constant, not data dependent). There is a residual dependency between ad-
jacent coefficients at the same scale (clustering) and between coefficients
in adjacent scales but the same spatial location (persistence). Our coding
schemes attempt to remove these correlations in the image.

5.4.3 A-DPCM for Scaling Coefficient(LL) Encoding

The scaling coefficients (LL subband) contain the maximum information and
thus more bits are allocated for its encoding. But it is also the most highly
correlated subband and this fact can be exploited to maximize compression.
An adaptive-DPCM scheme is used for encoding the LL subband. The cur-
rent pixel is predicted based on a linear combination of three causal nearest
neighbors. The predicted value of the pixel, X̂ is obtained as

X̂ = l(Q̄) = w̄.Q̄ =
∑

wkQk. (5.21)

The predictor coefficients w̄ are calculated to minimize the mean squared
prediction error as

w̄ = E(Q̄Q̄T )−1E(X.Q̄). (5.22)

where X is the pixel to be predicted, Qi are the quantities based on which the
pixel would be predicted (in this case the nearest neighbors), and w̄ are the
predictor coefficients. Instead of quantizing the pixel value, the error between
the actual and the predicted value (X − X̂) is quantized, which requires fewer
bits since the error would be much smaller than the original pixel value if the
prediction is good. Calculation of LMSE predictor coefficients can be done
offline on a set of similar images.

5.4.4 Zerotree Coding

In multiresolution wavelet decomposition, each coefficient Xi, except those in
the LL subband and the three highest subbands, is exactly related to 2 × 2
coefficients of the immediately higher subband. These four children coeffi-
cients correspond to the same orientation and spatial location as the parent
coefficient Xi. Each of the four children coefficients is in turn related to 2 × 2
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coefficients in the next higher subband, and so on. These coefficients are collec-
tively called the descendants of the parent Xi. All coefficients with magnitude
less than threshold T are called insignificant coefficients and their collection
is known as a zerotree. In order to obtain a real-time implementation [9], the
search for insignificant coefficients is started in the lowest-frequency subbands
except baseband and continued in higher-frequency subbands. When a coeffi-
cient is decided as insignificant and set to zero, all its descendants are also set
to zero. Thus, one needs to transmit only the escape code for the zerotree root
vector besides encoding the nonzero coefficients. The zerotree root positions
at each scale can be encoded efficiently using the Run-length Coding(RLC).
The non-zero coefficients can be scalar quantized and transmitted. This type
of simple threshold based zerotree coding, RLC and SQ are computationally
simple algorithms for hardware implementation.

However, it is possible that there are significant descendants even though
their parent is insignificant. These mispredictions are inevitable in a non-
iterative search method, but the conditional probability of this happening
is very small, as discussed in [9]. The misprediction error can be reduced
by predicting the value of a “zero” coefficient based on its nearest nonzero
neighbors (causal and noncausal) while decoding.

5.4.5 DPCM on Wavelet Coefficients

The zerotree coding exploits the persistence property of wavelet coefficients.
But there is also a residual correlation in the high-frequency subbands, es-
pecially the LH and the HL bands with horizontal and vertical neighbor,
respectively. Hence applying an A-DPCM scheme like that discussed for the
LL subband can give additional compression. Also while obtaining the predic-
tion value for the current pixel we can exploit both clustering and persistence
properties, i.e., obtain a prediction for the current pixel based on its vertical
(for HL) or horizontal neighbor(for LH) and its parent coefficient. Again as
in the case of the LL subband, the predictor coefficients can be calculated of-
fline for a sequence of similar images using (5.22). In this case the predictors
are the parent coefficient at the same spatial location and the horizontal or
vertical neighbor. This scheme is motivated by a similar scheme discussed in
[10] for visual images.

5.4.6 Compression Schemes

Four different schemes for encoding the wavelet coefficients were compared. In
all cases the LL subband was encoded using the A-DPCM scheme discussed
in Section 5.4.3.
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Scalar Quantization

This scheme involves scalar quantization (SQ) of the wavelet coefficients and
DPCM encoding of the LL coefficients. Variable bits are allocated to the
subbands based on their variances as discussed in [9].

Zerotree Coding

Zerotree coding is applied as discussed in Section 5.4.4. This not only gives a
significantly reduced bits per pixel (BPP) value than the SQ (as expected),
but also gives reduced MSE value compared to SQ. The reason is that the
quantization error is higher than the thresholding error for high-frequency
subbands which are coarsely quantized.

2D Predictive DPCM on Wavelet Subbands

Only DPCM coding is applied as discussed in Section 5.4.5 with no zerotree
coding. The performance of this scheme is bad because the “noisy data” close
to zero, cannot be predicted correctly and hence the prediction errors ob-
tained are sometimes larger than the original pixel value. Hence the MSE is
significantly higher.

Combined Zerotree and DPCM Coding

We propose to combine zerotree coding and the DPCM encoding (ZT/DPCM)
of wavelet coefficients to achieve maximal compression. First a simple zerotree
coding is applied to the subbands. This is followed by DPCM coding of the
“nonzeroed” coefficients. The value of a “zeroed” neighbor is predicted as
follows. If we predict Cx,y based on Cx−1,y which is “zeroed” and the zeroing
threshold is T , we estimate Cx−1,y as follows

S = Cx−2,y + Cx−1,y−1,

Ĉx−1,y =

⎧⎨⎩0 if S = 0,
−T if S < 0,
+T if S > 0.

This is based on the assumption that since the next coefficient is nonzero,
the previous one would be close to the threshold. DPCM combined with ze-
rotree coding works much better because the noisy coefficients have been set
to “zero” and we do not try to predict their value. The prediction model is
applicable only to those subbands for which enough (> 2) bits have been allo-
cated and the prediction error energy obtained while calculating the predictor
coefficients is less than 25% of the subband energy. For other subbands, SQ
is used.
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5.4.7 Performance Analysis

The aim of any compression scheme is to minimize the mean squared error
(maximize the PSNR) and the entropy per pixel (entropy rate, ER). In SQ,
each pixel is coded independently and the correlation in the image is not
exploited. So the entropy rate is higher. Entropy rate will be minimized if
each pixel is coded based on all past pixels on which it depends, i.e. (for a 1D
signal)

h(Xn) > h(Xn|Xn−1) > h(Xn|Xn−1, ..., 1). (5.23)

If we assume a one-step Markov model,

h(Xn|Xn−1 · · · 1) = h(Xn|Xn−1) (5.24)

For 2D data (assuming a Markov random field model), this translates to Xn,n

depending only on Xn−1,n and Xn,n−1.
The quantization MSE will be minimized for a given bit rate if the mean

square value of the quantity to be quantized is minimum. Hence instead of
quantizing Xn,n, in 2D predictive DPCM, we predict a value ( ˆXn,n) based on
past values and quantize the difference (Xn,n − ˆXn,n). ˆXn,n is calculated as
discussed in (5.21) to minimize E[Xn,n − ˆXn,n]2 and hence the quantization
MSE over all linear estimators. Also for a given quantization step size (fixed
MSE), reduced data variance means reduced entropy.

In zerotree coding, the PSNR is higher than SQ because the zeroing error
is lower than the quantization error for high-frequency subbands which are
coarsely quantized. Zeroing also reduces entropy since the number of symbols
to be compressed is reduced. The 2D MRF model with second-order depen-
dencies (correlations) fits well for the LL subband, but does not fit well for
the wavelet subbands and the prediction fails completely for very small val-
ues (only noise). This is the reason why DPCM on wavelet subbands gives
the worst PSNR values. Combined zerotree and DPCM (ZT/DPCM) gives
best results in terms of PSNR and entropy rate. The noisy coefficients are
zeroed and hence not predicted and thus the quantization error remains low.
Because of LMSE prediction, the entropy is minimum and zerotree coding
further reduces the entropy rate by reducing the number of symbols to be
coded.

5.4.8 Image Compression Results

Various types of low-pass and high-pass filters satisfying the prefect recon-
struction property can be used. In our implementation, the Haar transform
is used because of its simplicity and ease of hardware implementation. Using
a longer length filter will not be useful because the low-pass filter will tend
to average over a very large area and thus lose the localization property of
wavelet transforms. The Haar wavelet is built using a two-tap low-pass filter
[1, 1] and a two-tap high-pass filter [1,−1].
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Figure 5.5 shows the original tank2 image and Figure 5.12 shows the com-
pressed tank2 images using combined zerotree/DPCM coding and zerotree
coding.Table 5.4 shows the compression results for two sample IR images and
the Lena image.

Table 5.4. The bpp, PSNR[10 log10 2552/MSE] and entropy for three sample im-
ages using zerotree (ZT), zerotree and DPCM (ZT/DPCM), scalar quantization
(SQ) and only DPCM coding schemes.

Image Coder Total PSNR Entropy RLC
BPP (Non-zero) BPP

tank2 ZT/DPCM 0.5628 31.73 0.0920 0.2757
ZT 0.5628 31.61 0.2112 0.2757

tank12 ZT/DPCM 0.5232 31.75 0.0880 0.2649
ZT 0.5232 31.65 0.2045 0.2649

lena ZT/DPCM 0.5066 29.40 0.0851 0.2286
ZT 0.5066 29.30 0.1542 0.2286
SQ 0.7947 13.07 0.3156
DPCM 0.7947 25.34 0.1508

Figure 5.12. Compressed tank2 by (a) combined zerotree and DPCM coding (b)
zerotree coding.
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The results have been obtained by allocating a total of 0.5 BPP to various
subbands proportional to the logarithm of their variances. Since for this low
value of BPP, the lowermost subbands get negative bits allocated to them
(which are set to zero), the actual BPP obtained is higher than 0.5.

In Table 5.4 we have compared the total BPP, PSNR, BPP, for RLC
coding and entropy rate for three different images (two from the IR sequence
and the Lena image). The entropy rate is the minimum bits/pixel that can
be theoretically achieved for the image. Due to hardware constraints we have
not implemented any form of entropy coding (Arithmetic/Huffman).

As can be seen from the values of RLC BPP, almost half the bits are
used up in encoding the zerotree information. More efficient binary encoding
schemes can be employed to reduce this value and this could considerably
improve the BPP. Also, in most cases the combined zerotree and DPCM
scheme gives the best results both in terms of PSNR values and entropy. In
some cases like the Lena image, the PSNR is higher for simple zerotree coding,
but the entropy of the combined scheme is less. Ideally, one would assume that
applying a DPCM encoding would cause a significant reduction in PSNR. This
is definitely true for the LL subband, but the reduction for higher-frequency
subbands is not so much because of lesser correlation. Another reason is the
uncertainty in predicting the value of a pixel based on a neighboring “zeroed”
pixel. We are experimenting with better methods to improve the prediction
model for combined zerotree and DPCM encoding.

The BPP without zerotree coding is consistently higher for all the images
and hence the zerotree coding is advantageous even though half the BPP is
used up in RLC coding of the zerotree. Also surprisingly, the PSNR for SQ
is lower than for zerotree coding even when the BPP is higher. The reason
for this is that the quantization error in SQ is higher than the zeroing error
for the high-frequency subbands which are coarsely quantized. From Table
5.4, we observe that DPCM encoding without zeroing is the worst scheme.
This is because a lot of the coefficients below the zeroing threshold in the
high-frequency subband are actually “noise.” Thus, in DPCM we are trying
to predict the value of these “noise” pixels or use them to predict other pixels
and hence the predictions are very bad, thus leading to a higher PSNR. Hence
the DPCM model fails in the absence of zerotree coding, while it provides a
reasonably good model for the image when combined with zerotree coding.

5.4.9 Computational Complexity: Hardware Issues

The entire coding scheme is computationally very simple. The Haar wavelet
transform involves a single addition operation per pixel. Zerotree coding re-
quires one comparison to a threshold (per pixel) and a multiplication by two
(a shift operation) to calculate the descendant position. The DPCM oper-
ation involves three real multiplications and two additions to calculate the
predicted vale and one subtraction to obtain the error. Run-length coding is
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again a counting operation requiring one addition per pixel. Thus the addi-
tional cost over scalar quantizing the entire image is (which is the minimum
one has to do to compress an image) is three multiplications and a few addi-
tions per pixel. For an N2∗N2 image with a three-level wavelet decomposition,
the additional cost for our scheme is given by

ACHaar = (N2 + N2/4 + N2/16)CA, (5.25)

ACZeroing = (N2 + N2/4 + N2/16)(CC + CS), (5.26)

ACRLC = N2CA, (5.27)

ACDPCM = N2(3CM + 3CA), (5.28)

where AC is additional cost. CA is the cost for one addition, CM is the cost
for one multiplication, CC is the cost for one comparison, and CS is cost for
one shift (multiply by two) operation . Since comparison and shift are single
operations, CC = CS = 1. Hence, total additional cost is

AC = (N2 + N2/4 + N2/16)(CA + 2) + N2(3CM + 4CA). (5.29)

5.5 Performance Evaluation of Algorithms

We have developed a C/C++ implementation of the object detection and
compression/decompression algorithms. The C/C++ implementation of im-
age compression part of the system currently uses zerotree coding with SQ and
RLC. Performance evaluation of the C/C++ code was done using Hitachi’s
SH4–7751 microprocessor. SH4–7751 is a high-performance superscalar RISC
microprocessor designed for embedded applications. Some of the features of
SH4 include 167-mHZ clock frequency, upto 360 MIPS capability, and on-chip
cache for instruction and data. More information on SH4 can be found at
http://semiconductors.hitachi.com. We evaluated the code performance using
the Hitachi Embedded Workshop (HEW) which is an SH4 simulator provided
by Hitachi. The results were obtained using the profile utility of HEW. Note
that these results are obtained by directly cross-compiling the C code using
Hitachi’s cross-compiler. Hence, certain features of SH4 architecture (such as
floating point unit) which can enhance real-time performance are not used.
In practice, the performance can be improved by designing the assembly lan-
guage code for computationally expensive procedures so as to take advantage
of such features of the object microprocessor. The performance results of the
algorithms in terms of code size, run-time memory requirement and instruc-
tion cycles on SH4 are as follows.
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5.5.1 MTI Algorithm

The code size required for the MTI algorithm was 9.8 KB. For an input frame
size of 120 × 160 maximum run-time memory required was 1.086 MB. Cycles
required per frame were equal to 8.5 M which corresponds to 19.54 frames per
second (30 fps frame rate).

5.5.2 Image Chipping Algorithm

Motion Detection and Best-View Selection

For motion detection using the technique described in Section 5.2.3 and best-
view selection, the code size required was 16 KB. The run-time memory re-
quired for frame size of 240 × 320 was 2.4 MB and the processing frame rate
(for 120 × 160 frame size) was 4–5 frames per second.

Compression

The compression part of algorithm required a code size of 30.5 KB. For a
typical image chip of size 60×120, run-time memory required was 0.75 MB and
cycles on SH4 needed to compress the images was 31.5 M which corresponds
to run-time of 0.188 sec. The run-time is calculated as cycles/clock frequency.

Decompression

Decompression required a code size of 21.5 KB and for a typical image chip of
size 60×120, run-time memory required was 0.75 MB. Note that this memory
requirement will increase with chip size. Table 5.5 gives the instruction cycles
required for different PSNR values of reconstructed sample tank chip.

Table 5.5. Cycles and run-time required for decompression of a sample target chip
of size 60 × 120 for different PSNR.

PSNR(db) Cycles(million) Runtime on SH4(sec)

30.21 20.73 0.120
34.36 21.00 0.125
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5.6 Conclusions

A novel variance-analysis-based algorithm has been presented for moving ob-
ject detection. The algorithm is especially suitable for detection of long-range,
small, slow moving objects. An initial test on several IR sequences has revealed
high detection rates with low false alarms for vehicles at distances of several
kilometers. The algorithm is robust and requires no tuning of parameters
by the operator. For objects at short distances, technique based on detecting
and tracking image singularities have been discussed. Also for objects at short
range, methods for best-view selection and compression were presented. Three
different approaches to the best-view selection problem were compared. The
approach based on classification in eigenspace is suitable when multiple views
of the same object are available but has limitations when significant scale and
illumination variations are present. The FOE estimation approach would be
a useful method for direction of motion calculation but is computationally
expensive. The size-based technique is the fastest and gives reasonable results
and is used in our implementation. A new scheme combining noniterative ze-
rotree coding with 2D DPCM for LL and for the high-frequency subbands was
presented. This method gives better results than simple scalar quantization
and simple zerotree coding both in terms of BPP and PSNR at a marginally
increased computational cost. The algorithms were implemented in C and
their performance results on SH4 processor were presented.

The image compression results can be further improved by using some
form of entropy coding (since the entropy rate of our scheme is significantly
lower) and by replacing the run length coding method with more efficient
binary coding techniques. Also the zeroing thresholds can be calculated for
the required PSNR values.
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Chapter 6

Face Recognition in the Thermal Infrared �
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Summary. Recent research has demonstrated distinct advantages of using thermal
infrared imaging for improving face recognition performance. While conventional
video cameras sense reflected light, thermal infrared cameras primarily measure
emitted radiation from objects such as faces. Visible and thermal infrared image
data collections of frontal faces have been on-going at NIST for over two years, pro-
ducing the most comprehensive face database known to involve thermal infrared im-
agery. Rigorous experimentation with this database has revealed consistently supe-
rior recognition performance of algorithms when applied to thermal infrared, partic-
ularly under variable illumination conditions. Physical phenomenology responsible
for this observation is analyzed. An end-to-end face recognition system incorporat-
ing simultaneous coregistered thermal infrared and visible has been developed and
tested indoors with good performance.

6.1 Introduction

Accelerated developments in camera technology over the last decade have
given computer vision researchers a whole new diversity of imaging options,
particularly in the infrared spectrum. Conventional video cameras use pho-
tosensitive silicon that is typically able to measure energy at electromagnetic
wavelengths from 0.4 µm to just over 1.0 µm. Multiple technologies are cur-
rently available, with dwindling cost and increasing performance, which are
capable of image measurement in different regions of the infrared spectrum,
as shown in Figure 6.1. Figure 6.2 shows the different appearances of a human
face in the visible, shortwave infrared (SWIR) midwave infrared (MWIR), and
longwave infrared (LWIR) spectra. Although in the infrared, the near-infrared
(NIR) and SWIR spectra are still reflective and differences in appearance be-
tween the visible, NIR and SWIR are due to reflective material properties.
Both NIR and SWIR have been found to have advantages over imaging in the
visible for face detection [1] and detecting disguise [2].
� This research was supported by the DARPA Human Identification at a Distance

(HID) program under contract #DARPA/AFOSR F49620-01-C-0008.
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Figure 6.1. Nomenclature for various parts of the electromagnetic spectrum.
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Figure 6.2. A face simultaneously imaged in the (a) visible spectrum, 0.4–0.7
µm, (b) shortwave infrared, 0.9–1.7 µm, (c) midwave infrared, 3.0–5.0 µm, and (d)
longwave infrared, 8.0-14.0 µm.

At wavelengths of 3 µm and longer imaged radiation from objects becomes
significantly emissive due to temperature, and is hence generally termed the
thermal infrared. The thermal infrared spectrum is divided into two primary
spectra, the MWIR and LWIR. Between these spectra lies a strong atmo-
spheric absorption band between approximately 5 and 8 µm wavelength, where
imaging becomes extremely difficult due to nearly complete opaqueness of air.
The range beyond 14 µm is termed the very longwave infrared (VLWIR) and
although in recent years it has recieved increased attention, it remains beyond
the scope of this chapter. The amount of emitted radiation depends on both
the temperature and the emissivity of the material. Emissivity in the ther-
mal infrared is conversely analogous to the notion of reflective albedo used
in the computer vision literature [3, 4]. For instance, a Lambertian reflector
can appear white or grey depending on its efficiency for reflecting light en-
ergy. The more efficient it is in reflecting energy (more reflectance albedo) the
less efficient it is in thermally emitting energy respective to its temperature
(less emissitivity). Objects with perfect emissivity of 1.0 are completely black.
Many materials that are poor absorbers transmit most light energy while re-
flecting only a small portion. This applies to a variety of different types of
glass and plastics in the visible spectrum.

As detailed in the following section, the spectral distribution of energy
emitted by an object is simply the product of the Planck distribution for
a given temperature, with the emissivity of the object as function of wave-
length [5]. In the vicinity of human body temperature (37◦ C), the Planck
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distribution has a maximum in the LWIR around 9 µm, and is approximately
one-sixth of this maximum in the MWIR. As we will show through empirical
measurement, the emissivity of human skin in the MWIR is at least 0.91, and
at least 0.97 in the LWIR. Therefore, face recognition in the thermal infrared
favors the LWIR, since LWIR emission is much higher than that in the MWIR.
Thermal infrared imaging for face recognition first used MWIR platinum sili-
cide detectors in the early 1990s [6]. At that time, cooled LWIR technology
was very expensive. By the late 1990s, uncooled microbolometer imaging tech-
nology in the LWIR became more accessible and affordable, enabling wider
experimental applications in this regime. At that time, cooled MWIR technol-
ogy was about ten times more sensitive than uncooled microbolometer LWIR
technology, and even though faces are more emissive in the LWIR, in the
late 1990s MWIR could still discern more image detail of the human face. At
present, uncooled microbolometer LWIR technology coming off the assembly
lines is rapidly approaching one-half of the sensitivity of cooled MWIR. For
face recognition in the thermal infrared, this is a turning point as for the first
time the most appropriate thermal infrared imaging technology (i.e. LWIR)
for studying human faces is also the most affordable.

For over two years, data collections of both visible and thermal infrared
imagery of faces have been taken and continue to take place at regular intervals
of 6 months at the National Institute of Science and Technology (NIST). This
effort is supported by the DARPA HID program [7]. Section 6.2 describes the
comprehensive database resulting from these collections, consisting of over
100,000 images of over 300 individuals so far. This database has provided
the empirical foundation with which to rigorously compare the performance
of various face recognition algorithms between visible and thermal infrared
imagery. Some of these results are summarized in Section 6.6. Also described
in Section 6.6 is a recently completed full-working prototype of the equinox
access control environment (ACE) face recognition system, which uses fused
coregistered visible and LWIR imagery from a novel sensor system.

The main advantage of thermal infrared imaging for boosting face recog-
nition performance is its apparent invariance to changing illumination. Sec-
tion 6.4 attempts to characterize how well thermal infrared images of the
human face are invariant to illumination changes. Section 6.5 delves deeper
into explaining the physical phenomenology responsible for this invariance by
computing the emissivity of human skin in the MWIR and the LWIR. This
culminates in a preliminary thermal model for human skin. Finally, Section
6.7 briefly overviews some of the remaining challenges that thermal infrared
imaging does not immediately remedy for face recognition.



170 Lawrence B. Wolff et al.

6.2 The Equinox Visible/Infrared Face Database

Figure 6.3 shows the experimental set-up for imagery being collected on a
regular basis at NIST, simultaneosuly in the visible, SWIR, MWIR, and LWIR
spectra. The objectives for these ongoing data collections are as follows:

1. To be able to directly and rigorously compare the performance of face
recognition algorithms between visible imagery and imagery in the various
modalities of the infrared spectrum.

2. To produce face imagery simultaneously in these modalities under variable
illumination conditions.

3. To produce face imagery with significant intrapersonal variation for each
imaging condition and modality.

Towards the first objective a configuration of four different sensors of re-
spective modalities and interface software has been set-up for simultaneous
acquisition of visible, SWIR, MWIR, and LWIR imagery. All infrared cameras
are of the Indigo Merlin Series with 320∗240 resolution. The visible camera is
a Pulnix 6710 with 640∗480 resolution. A special optical design insures precise
pixel coregistration of visible and LWIR imaging modalities [8, 9]. Although
the SWIR and MWIR imaging modalities are boresighted2, impairing precise
coregistration at close distances, the physical separation between these cam-
eras has been minimized beyond what is shown in Figure 6.3 so that views are
nearly identical. Optically coregistered sensors in the NIR were in use [2, 1] for
face detection. The complexity of coregistering visible and LWIR wavelengths,
however, is much greater due to the larger disparity between them.

Towards the second and third objectives, collection of image data was re-
peated for three different illumination conditions: (i) Frontal, (ii) frontal-Left,
(iii) frontal-Right, with lamps shown in Figure 6.3 using standard 3200 K color
temperature photographic bulbs. Figure 6.4 shows the emission curve for these
bulbs in the wavelengths of interest. Forty image frame sequences of visible,
SWIR, MWIR, and LWIR were digitized simultaneously at 10 frames/second
(i.e., 4-seconds duration), while a human subject was reciting the vowels “a,”
“e,” “i,” “o,” “u.” This creates a continuous image sequence with changes in
expression throughout providing significant intrapersonal variation over the
course of multiple frames. At the same time there is little facial movement
between consecutive image frames 1/10 second apart, allowing for analysis of
image variations due to temporal sensor noise. Figure 6.2 is an example of one
such multimodal frame within this 40-frame sequence. After the acquisition
of each 40-frame contiguous image sequence, for each illumination three more
static images are taken of individuals told to make extreme expressions of
“smile,” “frown,” and “surprise.”
2 The term boresighted typically refers to cameras that have been placed alongside

each other and aimed in the same direction. Due to the separation between the
cameras, it is impossible to obtain the same view of a 3D object from both sensors.
This is often exploited in stereo vision to compute depth maps.
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Figure 6.3. Camera and illumination equipment set-up used for simultaneous data
collection of visible, SWIR, MWIR, and LWIR imagery.

Prior to data collection, the radiometric calibration procedure described
in Section 6.3 was performed for the Indigo Merlin series MWIR and LWIR
cameras using a Model 350 Mikron blackbody source. Software was developed
to convert raw MWIR and LWIR image grayscale values directly into respec-
tive thermal emission values from ground-truth blackbody images. Raw image
gray values for the MWIR and LWIR cameras are 12-bit integers from which
floating point thermal emission values were computed and then rounded back
to 12-bit values with appropriate dynamic range.

At present, the Equinox visible/infrared database consists of over 300 in-
dividuals imaged over five separate data collections at NIST. At least 60 in-
dividuals have participated in two or more of these data collections so that
intrapersonal variations over 6 months or more can be analyzed. To sum-
marize, for each individual a 40-frame sequence plus three static images were
taken for three different illuminations and four spectral image modalities. Not
including duplicate individuals, at least 340 individuals ∗ 43 images/modality
∗ 3 illuminations/individual ∗ 4 modalities = 175,440 images are contained in
the Equinox database. Almost all of this database was collected indoors, with
outdoor imagery beginning to be collected during the last data collection at
NIST in April 2002. A portion of this database is available on the Internet at
http://www.equinoxsensors.com/hid.
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Figure 6.4. (a) Blackbody Planck curves comparing thermal IR emission from
common natural and artificial illumination sources to thermal IR emission from
human skin. (b) Comparison of an ideal blackbody Planck curve with a nonideal
emitter at the same temperature.

6.3 Calibration Of Thermal IR Sensors

All objects above absolute zero temperature emit electromagnetic radiation.
In the early 1900s Planck was the first to characterize the spectral distribution
of this radiation for a blackbody, which is an object that completely absorbs
electromagnetic radiation at all wavelengths [5]. According to Planck’s law,
the spectral distribution of emission from a blackbody at temperature T , is
given by

W (λ, T ) =
2πhc2

λ5(e
hc

λkT − 1.0)
[Watts/cm2]µm−1, (6.1)

Q(λ, T ) =
2πc

λ4(e
hc

λkT − 1.0)
[Photons/cm2 − sec]µm−1, (6.2)

expressed in two different units of energy flux which are commonly used. In
the above formulas, h is Planck’s constant, k is Boltzmann’s constant, c is
the speed of light, and λ is wavelength. Figure 6.4(a) shows a comparison of
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blackbody spectral distributions corresponding to the various temperatures
for the Sun, artificial lightbulb illumination at 3200 K color temperature [10],
human skin, and average temperature for the atmosphere.

In reality, only very few objects are near perfect energy absorbers, partic-
ularly at all wavelengths. The proportional amount of energy emission with
respect to a perfect absorber is called the emissivity ε(T, λ, ψ), which takes
values in the range [0, 1]. In addition to temperature T and wavelength λ,
this can also be a function of emission angle ψ. Kirchoff’s law states that
the emissivity at a point on an object is equal to the absorption α(T, λ, ψ),
namely:

ε(T, λ, ψ) = α(T, λ, ψ) .

This is a fundamental law that effectively asserts the conservation of energy.
Blackbody objects are therefore the most efficient radiators, and for a given
temperature T emit the most energy possible at any given wavelength. Ex-
pressed in the same units as equations ( 6.1) and ( 6.2) above, the spectral
distribution of emission from an object with emissivity ε(T, λ, ψ), is given by:

ε(T, λ, ψ) × W (λ, T ), ε(T, λ, ψ) × Q(λ, T ) .

For illustrative purposes, Figure 6.4(b) compares the spectral distribution of
the emission of an ideal blackbody at 500 K (227◦C) with that of a nonideal
emitter (e.g., could be a piece of bare metal) also at the same temperature. In
this case the nonideal emitter has low emissivity at wavelengths in the MWIR
spectral region (3-5 µm) and generally high emissivity in the LWIR spectral
region (8-14 µm).

Under most practical conditions, 2D imaging array thermal IR sensors
(i.e., what are termed staring arrays) measure simultaneously over broadband
wavelength spectra, as opposed to making measurements at narrow, almost
monochromatic, wavelengths (e.g., an IR spectrophotometer which measures
only one point in a scene). With a staring array sensor it is possible to measure
average emissivity over a broadband spectrum (e.g., 3-5 µm, 8-14 µm), which
in Figure 6.4(b) is simply the ratio of the area under the nonideal curve to
the area under the Planck curve over the respective wavelength spectrum.

Some of these principles can be observed in Figure 6.5 (in Section 6.4).
Plastic materials transparent in the visible spectrum that compose glasses are
opaque in the LWIR and appear dark. Emissivity of this material is small
in the visible spectrum while being significantly above 0.80 in the MWIR
and LWIR spectral regions. The dark appearance of glasses in the LWIR and
the MWIR relative to thermal emission from human facial skin is mostly
due to the glasses being close to room temperature, about 15◦C cooler than
body temperature. We performed simple experiments whereby these same
pair of glasses were heated close to body temperature. Sure enough, the glasses
appeared thermally much brighter, but did not show as much thermal emission
as facial skin at the same temperature. Also, from Figure 6.5 the influence
of reflection of external illumination from glasses is far more prominent than
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that from facial skin. All of this initially suggests that facial skin has very high
emissivity, significantly higher than that of the material comprising glasses.
A quantitative estimate of the average emissivity of facial skin in the MWIR
and LWIR is developed in Section 6.5, supporting this assertion.

Just like visible video cameras, thermal IR cameras measure energy of
electromagnetic radiation, the main difference being that because thermal
IR cameras sense at such long wavelengths, they measure radiation that has
been typically thermally emitted. Of course, visible cameras see radiation
emitted from very hot sources (e.g., the sun or artificial lightbulbs which are
thousands of degrees Kelvin) but the primary scene elements of interest in
the visible are objects from which such light is reflected. Sometimes there
is the misconception that thermal IR cameras directly measure temperature,
which would be true if all objects were blackbodies. Temperature can be
determined indirectly from a thermal IR camera by measurement of energy of
emitted radiation, using precise knowledge of emissitivity of the object, which
is dependent upon a number of parameters.

Figure 6.5. A qualitative demonstration of the illumination invariance for LWIR
imagery of a face under different illuminations. Top row: Visible imagery of a face
under three illumination conditions respectively front, left, and right. Bottom row:
Co-registered thermal IR imagery simultaneously acquired for each of the three
images in top row respectively.

Thermal IR cameras can be radiometrically calibrated using a blackbody
ground-truth source. Radiometric calibration achieves a direct relationship
between the gray value response at a pixel and the absolute amount of ther-
mal emission from the corresponding scene element. This relationship is called
responsivity. Depending on the type of thermal IR camera being used, ther-
mal emission flux is measured in terms of watts/cm2 or photons/(cm2 −
second) [11]. The gray value response of pixels for a MWIR camera with an in-
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dium antimonide (InSb) focal plane array is linear with respect to photons/(cm2−
second). The gray value response of pixels for an LWIR camera using a mi-
crobolometer focal plane array is linear with respect to watts/cm2. Two-point
radiometric calibration uses a blackbody plate filling the field of view of the
thermal IR camera and capturing images for the blackbody at two different
temperatures. Given that human body temperature is 37◦C, two good tem-
peratures to use for calibrating the imaging of humans in a room temperature
scene would be 20◦C and 40◦C (293 K and 313 K), as these are relatively
evenly spread about the temperature of skin. A relatively large difference be-
tween the calibration temperatures will insure numerical stability of the linear
regression, while a choice of temperatures nearby the temperature of interest
minimizes possible effects from a secondary nonlinear response of the focal
plane array.

Since absolute thermal emission is known by computing the area under the
Planck curve for the corresponding temperature and wavelength spectrum, a
responsivity line is generated at each pixel by two (greyvalue, thermal emis-
sion) coordinate values. The slope of this responsivity line is called the “gain”
and the vertical translation of the line is “offset.” The gain and offset for each
pixel on a thermal IR focal plane array can be significantly variable across the
array. Radiometric calibration standardizes thermal emission measurement by
generating a responsivity line for each pixel.

Figure 6.6 shows responsivity lines respective to different integration times,
for a single pixel near the center of a MWIR InSb focal plane array that was
used to collect face imagery. Eight different temperatures of a blackbody were
used to generate multiple data points demonstrating the highly linear re-
sponse. It is clearly important to record all thermal IR camera parameters
for a given radiometric calibration. Note that the responsivity lines for dif-
ferent integration times intersect at the same point, related to various DC
bias control settings on the camera. Beyond camera parameters, if an MWIR
or LWIR camera is originally radiometrically calibrated in an indoors envi-
ronment, taking it outdoors where there is a significant ambient temperature
difference, the gain and offset of linear responsivity of focal plane array pixels
will change as the optical lens temperature in front of the focal plane array
changes. Radiometric calibration standardizes all thermal IR data collections,
whether they are taken under different environmental factors or with different
thermal IR cameras or at different times.

6.4 Measuring Illumination Invariance

Variation in illumination is one of the biggest factors that confounds face
recognition algorithms in the visible spectrum [12, 13]. It has been recognized
in the past [2, 14, 6, 15] that changes in illumination appear to play less of a
role in the thermal infrared, but how does one quantify this invariance in terms
that are meaningful to face recognition? One way is to quantitatively compare
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the effect that variation in illumination has on face images in the thermal
infrared with other factors that contribute to changes in face imagery, such as
variations in facial expression and more subtle variations due to camera noise.

Illumination invariance of the human face in the termal infrared can be
qualitatively observed in Figure 6.5 for a coregistered LWIR and visible video
camera sequence of a face under three different illumination conditions. For
this sequence a single 60-W light bulb mounted in a desk lamp illuminates
a face in an otherwise completely dark room and is moved into different po-
sitions. The top row of visible video imagery shows dramatic changes in the
appearance of the face. The bottom row shows LWIR imagery which, unlike
its coregistered visible counterpart, appears to be remarkably invariant across
different illuminations, except in the image area corresponding to the glasses.
As we will see, illumination invariance in the thermal infrared, while not being
completely ideal, is nonetheless strongly approximate.

Figure 6.6. Responsivity curves for different integration times for the Indigo Merlin
Series MWIR camera used for collecting face images.

Figure 6.7 shows simultaneously acquired MWIR and LWIR images of a
subject from the Equinox database, together with corresponding gray value
histograms of an individual under the three illumination conditions previously
described. These images are the third image frame out of each respective 40-
image frame sequence. Gray values in the histograms are represented as 16-bit
integers with the high 12-bits being the actual image gray value. The gray
level histograms are remarkably stable across different illuminations for both
the MWIR and the LWIR images. Of the variations that are present in the
respective histograms, which are due to change in illumination and which are
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due to other factors? For instance, note the darker mouth region in the MWIR
image for right illumination as compared to the mouth region in the MWIR
images for other illuminations. The darker mouth region is due to the subject
breathing-in room temperature air at the moment, thereby cooling down the
mouth. This has nothing to do with any illumination condition.

The histograms in Figure 6.7 can be compared with those in Figure 6.8,
which shows gray value histograms corresponding to the fourth and twenti-
eth image frame out of the 40-image frame sequence respective to the frontal
illumination condition. In this case, illumination is the same but the fourth
frame being consecutive with the third frame isolates changes due to camera
noise, and the twentieth frame occuring just under two seconds later means
the subject has changed facial expression. The variations in the gray level his-
togram due to camera noise and to different facial expression under the same
illumination are of similar magnitude to variations occurring under different
illumination.

A quantitative analysis of invariance in the framework of hypothesis testing
was also performed. The following analysis is repeated for two different dis-
tance measures between images. Firstly we consider the L2 distance between
normalized images taken as vectors. Secondly, we use the Kullback–Leibler
divergence3 between the histograms of the normalized faces, given by

I(P, Q) =
∫

P log
P

Q
,

where P and Q are the respective normalized histograms.
For each video sequence of 40 + 3 frames4, we compute the 43 · 42/2 =

903 distances between normalized faces for distinct pairs of frames. Also, we
compute the 43 · 43 = 1849 distances between normalized faces for sequences
of the same subject and modality, one sequence with frontal illumination and
the other with lateral illumination. From these computations we estimate
(nonparametrically) the distribution of distances for images with the same
illumination condition and with different illumination conditions. Figures 6.9,
6.10, 6.11, and 6.12 show the estimated distributions for the L2 distance and
KL-divergence for two subjects in our database. With an infinite supply of
images, we would expect the distances to behave according to a χ distribution
with the number of degrees of freedom matching the number of pixels in
the normalized faces, and indeed the experimental estimates approximate χ
distributions.

It is clear from Figures 6.9, 6.10, 6.11, and 6.12 that the distances between
normalized visible faces with different illumination conditions are much larger
3 The Kullback–Leibler divergence does not satisfy the triangle inequality, and thus

is not strictly a distance. However, it provides an information-theoretic measure
of similarity between probability distributions.

4 Recall that 40 consecutive video frames were collected while subjects recited the
vowels, and then three additional static frames were acquired while the subjects
were asked to act out the expressions “smile,” “frown,” and “surprise.”
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Figure 6.7. MWIR and LWIR imagery of a face for three illumination conditions
and respective histograms of the third frame out of a sequence of 40 images.

than those for visible faces with the same illumination condition. This indi-
cates that the variation in appearance due to change in illumination is much
larger than that due to change in facial expression. The corresponding state-
ment for LWIR imagery does not hold. That is, looking once again at Figures
6.9, 6.10, 6.11, and 6.12, one can see that the distribution of distances between
normalized faces with different illumination conditions is comparable (but not
equal; see below) to the distribution obtained by using images acquired with
the same illumination condition. In other words, the variation in appearance
introduced by changes in illumination and expression is comparable to that
induced by changes in facial expression alone. Phrasing these statements as
formal hypothesis, we can reject the null-hypothesis of illumination invari-
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Figure 6.8. MWIR and LWIR imagery of the same face as Figure 6.7 respective
to frontal illumination for the fourth frame (top row) and twentieth frame (bottom
row) out of a sequence of 40 images.
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of subject 2344.
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Figure 6.10. Distribution of Kullback–Leibler divergences for visible (left) and
LWIR (right) images of subject 2344.
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Figure 6.11. Distribution of L2 distances for visible (left) and LWIR (right) images
of subject 2413.
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Figure 6.12. Distribution of Kullback–Leibler divergences for visible (left) and
LWIR (right) images of subject 2413.
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ance for visible imagery with a p-value smaller than 0.015, whereas we are
unable to reject the null-hypothesis for LWIR imagery with any significant
confidence. The slight shift in the distributions to the right for variable illu-
mination suggests that illumination invariance in the LWIR is not completely
ideal.

6.5 Emissivity Of Human Facial Skin

Figure 6.4(a) shows that the amount of thermal emission from a common light-
bulb is three to four orders of magnitude greater than the thermal emission
from skin in both the 3–5 µm MWIR region and the 8–14 µm LWIR region.
Empirical observation with our own MWIR and LWIR cameras showed that
direct illumination from an incandescant filament through lightbulb glass and
plastic diffuser is at least 300 times greater than thermal emission from human
facial skin. This is a rather striking fact given that thermal IR imagery of faces
is highly illumination invariant. Human skin must absorb a large quantity of
radiation in both the MWIR and the LWIR implying that skin has very high
emissivity.

Figure 6.13 shows a human subject in the same scene with a 6in ∗ 6in
square blackbody (Mikron Model 345) imaged in the MWIR and LWIR spec-
tra. Separate images are taken for the blackbody at two different tempera-
tures: 32◦C and 35◦ C. The corresponding histograms show gray value modes
for the facial skin image region and for the blackbody image region. Prior
to imaging, an Anritsu thermocouple was used to make contact tempera-
ture measurements on the forehead, on both cheeks and on the chin of the
human subject. An average skin surface temperature of 32◦C was observed.
Note, however that the face thermally emits more energy than does a 32◦C
blackbody. Recall that a blackbody is, by definition, a perfect emitter at all
temperatures and wavelengths. Therefore, we have a physical contradiction
unless we can account for the extra radiation. Since the path self-emission
from the atmosphere between the subject and the sensor is negligible com-
pared to the emission from the subject, we conclude that the extra radiation
must be originating below the skin surface (where body temperature is around
37◦C) and shining through the translucent skin layer and onto the sensor. This
may reveal an important aspect of how thermal emission arises from human
anatomy and perhaps even a physical mechanism for why skin has such high
absorption in the thermal IR.

Figure 6.14 illustrates a preliminary high-level model of human skin in
terms of optical and thermal properties. Evidently, skin layers must be sig-
nificantly transmissive to thermal emission from underlying internal anatomy
5 This means that the likelihood of our rejecting the hypothesis of illumination

invariance for visible imagery while at the same time the hypothesis being true
is lower than 1%[16].
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MWIR LWIR

MWIR LWIR

Figure 6.13. Direct comparison of MWIR and LWIR imagery of a face with a
groundtruth blackbody at two different temperatures, 32◦C and 35◦C.

which is at a higher temperature. This is qualitatively evidenced from ther-
mal observation of prominent vasculature beneath the skin particularly in the
neck and forehead. Just how far below the skin surface thermal emission is
transmitted is unclear and is an avenue for future research. If at least the
outer layers of skin are transmissive, then incident thermal IR illumination
must be first transmitted and then absorbed within deeper layers of skin or
other anatomy. This may explain why the amount of thermal emission from
skin seems to be independent of external skin color in the visible spectrum.
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Figure 6.14. Preliminary thermal model for human skin.

We now proceed to compute a quantitative estimate of the average emis-
sivity respective to the MWIR and the LWIR for human facial skin from the
data in Figure 6.13. First we compute the mean thermally emitted energy of
facial skin Skinmean

energy. Since the thermal IR imagery used is radiometrically
calibrated, we can compute the mean gray value in the histogram for the
facial lobe and determine the corresponding energy by linearly interpolating
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between the gray value peaks for the blackbody at 32◦C (305 deg. K) and
35◦C (308 K) and respective blackbody energies. For the MWIR this is

Skinmean
energy = BB305K

energy+

[BB308
energy − BB305

energy]
Skinmean

gray − BBgray305K
max

BBgray308Kmax − BBgray305Kmax
, (6.3)

where

BB308K
energy =

∫ 5

3
Q(λ, 308K)dλ,

BB305K
energy =

∫ 5

3
Q(λ, 305K)dλ .

For the LWIR replace Q(λ, T ) with W (λ, T ) and integration occurs over wave-
lengths from 8 to 14 microns.

We then make a conservative estimate of the lower bound for average
emissivity, ε, by comparing the mean thermally emitted energy of facial skin
to a blackbody at internal body temperature 37◦C. This yields:

εskin
mwir >

Skinmean
energy∫ 5

3 Q(λ, 310K)dλ
= 0.91,

εskin
lwir >

Skinmean
energy∫ 14

8 W (λ, 310K)dλ
= 0.97.

These lower bounds are conservative as this effectively assumes that thermal
emission is being sensed from a material that has a temperature of 37◦C
throughout. In reality there is a temperature gradient from the skin surface
at 32◦C through skin layers and blood vessels eventually to 37◦C internal
body temperature. The average temperature lies somewhere between 32 and
37◦C. It is clear that skin at least has high emissivity in the MWIR and
extremely high emissivity in the LWIR supporting a physical basis for excellent
illumination invariance.

As the emissivity of skin is so close to 1.0, it is meaningful to quantify what
is the average skin temperature due to the internal temperature gradient below
the skin. This can be defined in terms of a blackbody equivalent temperature
of skin, to be the temperature of a blackbody emitting equivalent energy as
Skinmean

energy. This temperature, SkinBBT , can be computed by numerically
solving the following integral equations:∫ 5

3
Q(λ, SkinBBT

MWIR)dλ = Skinmean
MWIR energy,

∫ 14

8
W (λ, SkinBBT

LWIR)dλ = Skinmean
LWIR energy .
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From the data presented in Figure 6.13 we compute:

SkinBBT
MWIR = 34.3◦C, SkinBBT

LWIR = 34.7◦C.

(a) (b) (c)

Figure 6.15. Face imaged in the LWIR (a) low activity, (b) after jogging, (c) after
being outdoors at 0◦C ambient temperature.

Modeling thermal emission from human faces is a good first step toward
improving infrared face recognition performance. Much as understanding re-
flective phenomenology in the visible spectrum has led to development of
algorithms that take explicit account of illumination variation [17, 18, 19],
the same is true for understanding of underlying emissive phenomenology in
the thermal context.

6.6 Comparison Of Face Recognition Performance In
The Visible And Thermal Infrared

Over the course of the last two years, successively more comprehensive per-
formance testing of existing appearance-based face recognition algorithms has
occurred on the Equinox visible/infrared database [8, 9, 20]. The algorithms
tested include principal component analysis (PCA) also known in the face
recognition community as eigenfaces [12], local feature analysis (LFA) [21],
linear discriminant analysis (LDA) — also known in the face recognition com-
munity as Fisherfaces [22] — and independent component analysis (ICA) [23].
Although we have available to us imagery from the visible spectrum and three
different infrared spectra, we selected for direct comparison the visible and
LWIR spectra since they are the most complementary respective to reflec-
tive versus emissive phenomenology. Also of key importance has turned out
to be experimentation with precisely coregistered fusion of visible and LWIR
imagery.

Prior to the mid-1990s, Wilder et al. [15] had directly compared perfor-
mance on a smaller dataset of visible and thermal infrared imagery. In this case
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the thermal infrared was MWIR imagery taken with a platinum silicide sen-
sor. Their study concluded that both modalities yielded approximately equal
performance. No image fusion of visible and MWIR was tested, although it
was suggested in conclusion that such fusion might be beneficial.

Only the most basic features of testing conducted in [8, 9, 20] will be re-
viewed presently, and these references should be consulted for further details.
Prior to testing, each face image is preprocessed using standard geometric im-
age normalization techniques by manually locating eye features and frenulum.
These images are then subsampled and subsequently cropped to remove all
but the inner face. Figure 6.16 shows examples of normalized visible and LWIR
image pairs from the Equinox database. As discussed in [24] face recognition
performance is analyzed using pairs of sets called gallery gallery and probe face
image sets6. The gallery is an exemplar image set of known individuals, and
the probe is an image set of unknown individuals that need to be classified.
For testing correct identification performance of a face recognition algorithm,
consecutive gallery images can be rank-ordered with respect to how well they
match an unknown probe image with the closest gallery image match being
the highest rank and consecutive lower rankings corresponding to consecu-
tively worse matches with respect to a given metric. One way of quantifying
correct identification by a given algorithm is by the percentage of probe images
that correctly correspond to the matched individual who is highest ranked in
the gallery. Table 6.1 shows a brief summary of performances for different
algorithms on visible, LWIR, and fused imagery. This test set is particularly
challenging for two reasons. First, the gallery and probe images were taken at
different times, ranging from six months to two years apart. Secondly, while all
the gallery images were acquired indoors, a portion of the probe images were
acquired outdoors. We see that a PCA-based algorithm has very low perfor-
mance on both visible and LWIR. Interestingly, in this case fused performance
is actually lower than LWIR performance. This occurs only when recognition
performance in one or both modalities is severely impaired, as is the case
here. Performance for an LDA-based algorithm is much better, and exhibits
improvement when visible and LWIR results are fused. Best performance on
this set is obtained with Equinox’s proprietary fused algorithm, which reduces
the residual error by about 23% over the fused LDA-based result.

Figure 6.17 depicts distributions which compare the performance of an
LDA-based algorithm with respect to a Monte Carlo simulation of 30,000
gallery-probe image set pairs for visible, LWIR and fused visible/LWIR modal-
ities. Figure 6.17(a) shows the distribution of top-match recognition perfor-
mance for an LDA-based algorithm when applied to visible, LWIR and fused
imagery. It is easy to see that mean recognition rates are considerably higher
for LWIR imagery than for visible imagery, and that when both modalities
are fused, recognition performance climbs even higher. Not only is the mean
6 A third set, the training set, is used to determine algorithm parameters, and is

disjoint from gallery and probe sets.
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Figure 6.16. Example of visible (top) and LWIR (bottom) normalized face images.

Table 6.1. Top match recognition performance summary for different algorithms
on visible, LWIR and fused imagery. Probe images are six months to two years older
than corresponding gallery images. All gallery images are taken indoors, while some
probes are taken outdoors.

PCA Angle LDA Angle Equinox
Visible 19.355 55.323
LWIR 30.968 61.452
Fused 23.548 74.451 80.323

correct identification highest for fused visible/LWIR but note the smaller stan-
dard deviation, indicating more stability over variations in gallery and probe
sets. In Figure 6.17(b), we see paired performance differences for the same
set of experiments. In this case for each random experiment, the performance
difference between LWIR and visible and fused and visible becomes one data
point. The distribution of these differences, shown in the figure, indicates that
LWIR affords an average performance gain of 6 percentage points over visible
imagery, while fusion of visible and LWIR increases that gain to 9 percentage
points. Note that this constitutes a reduction of the residual error by 75%
when using fused imagery versus visible imagery alone.

Figure 6.18 shows a set of receiver operating characteristic (ROC) curves
for an LDA-based facial verification algorithm applied to visible, LWIR and
fused visible/LWIR imagery. These curves are obtained by averaging the re-
sults from thousands of experiments generated by randomly selecting different
nonoverlapping gallery and probe sets. Recall that an ROC curve shows the
trade-off between correct verification versus false acceptance, as the security
setting of the system is varied from low to high. The equal-error-rate (EER)
is the point on the curve at which false acceptance equals correct verification,
and is often used as a scalar summary of the entire ROC curve, with lower
values indicating higher performance. In this case, we see that the use of fused
visible/LWIR imagery cuts the EER by more than 50% versus visible imagery
alone.

An end-to-end face recognition system based upon coregistered visible and
LWIR imagery has been developed. The bottom row of images in Figure 6.5
illustrates a visualization of fused visible/LWIR imagery. This system, called
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Figure 6.17. Performance comparisons of linear discriminant analysis (LDA) for
visible, LWIR and fused visible/LWIR modalities. (a) Performance distributions,
(b) paired performances. Taken from [20].
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Figure 6.18. Receiver operator characteristic (ROC) curve comparing the same
LDA-based algorithm for visible, LWIR, and fused visible/LWIR modalities. Taken
from [20].

the Equinox access control environment (ACE), is capable of enrolling in-
dividuals into a database, and then for unknown individuals automatically
detecting their faces in an image and recognizing whether they belong to the
database. Face detection is another involved technical aspect separate from
the recognition stage, and is beyond the scope of this article [25]. A recent
demonstration of the Equinox ACE system over three days in July 2002 en-
rolled 105 individuals into this system at a trade show. Approximately two-
thirds of these individuals returned to be recognized of which well over 90%
were correctly identified as a top ranked match in the database. This included
subjects that purposely attempted to fool the system by partially obstructing
the view of their face, or attempting to mask their thermal appearance by
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applying ice cubes to their face. Plate I shows one of the interfaces for this
system explained in the caption. Note that while the system exploits fused
visible and thermal imagery, the interface may be used in visible-only mode
for ease of interpretation by the operator.

6.7 Conclusions, Challenges Ahead, and On-Going Work

This article provides a broad overview of research that has been proceeding at
Equinox Corporation for the past two years on using thermal infrared imagery
for enhancing face recognition. The following key aspects were described:

• Collection of a comprehensive database of thermal infrared imagery of
human faces incorporating radiometric calibration, multiple illumination
conditions, and imagery of duplicated individuals over time.

• Extensive experimental testing of the performance of appearance-based
face recognition algorithms, directly comparing performance on visible,
LWIR, and fused visible/LWIR modalities.

• Quantification of illumination invariance and examination of physical phe-
nomenology responsible for illumination invariance of human faces in ther-
mal infrared imagery.

• Development of a working end-to-end face recognition system using a novel
sensor configuration that precisely coregisters visible and LWIR image
modalities.

Statistically significant evidence was presented indicating that appearance-
based face recognition algorithms applied to thermal infrared, particularly
LWIR imaging, have consistently better performance than when applied to
visible imagery. Application of these algorithms to fused visible/LWIR con-
sistently showed even better improvement in performance.

To date, the largest issue not yet addressed by face recognition using ther-
mal infrared is performance analysis under different extreme activity levels and
extreme ambient temperature. It should be carefully noted that examples of
extreme varying activity levels, which pose a potentially serious disadvantage
to recognition using thermal infrared, have not yet been incorporated into
the Equinox visible/infrared database. By virtue of the fact that the Equinox
database is comprised of imagery taken at intervals of six months for over
two years means that some range of normal activity level must be inherently
incorporated for duplicate individuals. So far, this does not appear to have an
adverse effect on recognition performance. More precisely, performance degra-
dation over time is similar for visible and thermal imagery, with a possible
advantage toward the thermal modality. However, it is important to note that
data collections under different deliberate changes in activity level do need
to be performed. Figure 6.15 shows the large difference in thermal infrared
signatures for the same face at rest, after jogging and after coming in from
outdoors at winter time. Additionally, the effect of other confusers such as



Chapter 6 Face Recognition in the Thermal Infrared 189

heavy makeup application must be evaluated. Existing data is not sufficient
to perform a valid evaluation, but we intend to collect data specifically for
this task. Evidence from small-scale experiments performed in-house indicates
that recognition performance using fused visible/LWIR imagery remains high
in the presence of differences in facial hair or glasses between gallery and
probe images. These variations in appearance do not noticeably hinder our
system’s ability to recognize faces. We should, however, point out that these
results may not be statistically significant, due to the small sample size. We
do expect to see some performance degradation in a large-scale experiment.
It has already been noted that thermal infrared imagery has the potential for
being used to identify an individual’s activity state and even state of inebri-
ation [14, 26]. Unfortunately, this benefit may counterbalance to some degree
the performance accuracy of unique face recognition capability. On-going work
is incorporating more thermal infrared face imagery in outdoor environments,
and will also shortly include varying activity and ambient temperature con-
ditions as well.
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Summary. Magnetic resonance (MR) imaging allows 2D, 3D, and 4D imaging
of living bodies. The chapter1 briefly introduces the major principles of magnetic
resonance image generation, and focuses on application of computer vision tech-
niques and approaches to several cardiovascular image analysis tasks. The enormous
amounts of generated MR data require employment of automated image analysis
techniques to provide quantitative indices of structure and function. Techniques for
3D segmentation and quantitative assessment of left and right cardiac ventricles,
arterial and venous trees, and arterial plaques are presented.

7.1 Introduction

Cardiovascular disease is the number one cause of death in the western world.
Cardiac imaging is an established approach to diagnosing cardiovascular dis-
ease and plays an important role in its interventional treatment. Three-dimensional
imaging of the heart and the cardiovascular system is now possible with x-ray
computed tomography, magnetic resonance, positron emission tomography,
single photon emission tomography, and ultrasound, to name just the main
imaging modalities. While cardiac imaging capabilities are developing rapidly,
the images are mostly analyzed visually and therefore qualitatively. The abil-
ity to quantitatively analyze the acquired image data is still not sufficiently
available in routine clinical care. Large amounts of acquired data are not fully
utilized because of the tedious and time-consuming character of manual anal-
yses. This is even more so when 3D image data need to be processed and
analyzed.

In this chapter, we will concentrate on cardiac image analysis that uses
magnetic resonance (MR) to depict cardiovascular structure. After briefly
describing capabilities of MR to image the heart and vascular system, we will
1 Portions reprinted, with permission, from IEEE Transactions on Medical Imaging,

Volume 21, pp. 1167–1178, September 2002. c© 2002 IEEE.
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devote the rest of the chapter to outlining techniques of highly automated
MR image analysis.

7.2 Capabilities of MRI

Principles of MR Imaging

Magnetic resonance imaging (MRI) relies on the phenomenon of nuclear mag-
netic resonance to generate image contrast [1, 2]. The hydrogen atom (along
with other species having an odd number of protons or neutrons, such as
sodium and phosphorous) possess a spin angular momentum. The single pro-
ton of the hydrogen atom (often referred to in this context as a spin) is by
far the most abundant, and thus is considered in the vast majority of imaging
applications. Most importantly, for the purposes of imaging, the spins will
give rise to a magnetic moment and will act like microscopic bar magnets.
As a result, when the protons are placed in a strong static magnetic field, at
equilibrium they tend to line up in the same direction as the external field.
The net effect of all the spins lined up in this way generates a small but mea-
surable magnetization along the longitudinal direction of the large external
field. The magnitude of this magnetization increases as the strength of the
external field is increased.

By itself, this magnetization does not give much useful information about
the distribution of the protons within the object. The application of a second
small (relative to the primary strong field) magnetic field oscillating in the
radiofrequency (RF) range sets up a resonance condition and will perturb the
spins away from their equilibrium state, “tilting” them away from their align-
ment with the main field into the transverse plane. Much like a gyroscope,
this will excite the spins causing them (and their magnetic fields) to precess
about the direction of the main field, and the rate at which the spins precess
is directly proportional to the strength of the main magnetic field. Figure
7.1 shows the relationship between the two magnetic fields and the resulting
perturbation of the magnetization vector. A fundamental principle of electro-
magnetics is that a time-varying magnetic field can induce an electric current
in an appropriately placed coil of wire, generating a signal that can measure
the distribution of the spins within the object. Since the rate of precession
depends on the magnetic field strength, slightly varying the strength across
the bore of the magnetic with gradient fields yields a spatially varying rate
of precession [3]. When the RF field is removed, the spins begin to return
towards their equilibrium state aligned with the strong static magnetic field.

The rate of return of spins to their equilibrium state is governed by two
time constants intrinsic to different tissue types, T1 and T2. T2 determines
how long it will take for the signal generated by the “tipped” spins to decay
away. T1 measures the amount of time it takes for the spins to completely
return to their equilibrium alignment with the main magnetic field (see Figure



Chapter 7 Cardiovascular MR Image Analysis 195

Net
Magnetization

θ

x y

z

ω0

Main Field

RF Excitation
Field

Figure 7.1. Generation of MRI signal with RF field. Application of a small rotating
magnetic field at the resonant frequency ω0 causes the magnetization vector to tilt
and precess into the transverse (x−y) plane by an angle θ. The precessing transverse
component generates the MR signal, which can be detected by a receiver coil.
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Figure 7.2. Relaxation of transverse and longitudinal magnetization. After exci-
tation, the measurable transverse signal decays away with time constant T2, while
the longitudinal magnetization is recovered with a time constant T1. Both constants
are dependent on tissue type and strength of the main field.

7.2. Because of this signal decay, an MR imaging experiment generally must
consist of several cycles of signal generation followed by signal measurement
or acquisition.

Hence, the signal measured from a tissue will depend on its density of
protons as well as its T1 and T2 relaxation parameters. Motion and flow
also contribute to the final signal generated. The remarkable ability of MRI
to generate a wide variety of tissue contrast arises from the fact that the
imaging experiment can be designed to vary the relative weight of each of these
parameters in the measured signal. For example, muscle and fat have very
different T1 and T2 parameters and by varying the timing of the applied RF
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excitation pulses, maximum contrast between the two can be achieved. Other
strategies may enhance or suppress flowing blood compared to stationary
tissues.

Challenges of Cardiovascular MRI

Cardiovascular imaging presents formidable challenges for any imaging modal-
ity as well as some unique to MRI. Because the signal generated by a single
RF excitation decays away quite rapidly (on the order of milliseconds), for-
mation of a complete image nearly always requires repeated excitations and
data acquisition. Motion of tissues between acquisitions or during a single ac-
quisition causes blurring and other artifacts that compromise image quality.
The heart is in constant motion throughout the cardiac cycle, and respira-
tion also causes the heart and other organs of the chest and abdomen to shift
positions throughout duration of an image acquisition. Both types of motion
must be suppressed in some way if high-resolution images of the cardiovascular
anatomy are to be generated.

The problem of cardiac motion is overcome by synchronizing each excita-
tion and data acquisition to the heart cycle, as measured by electrocardiog-
raphy [4]. Each data acquisition is acquired during a narrow window of time
at the same point or phase of the heart cycle, yielding a correctly registered
set of measurements that can be reconstructed with minimal motion artifact.
The drawback is that only a fraction of each heart cycle can be utilized for
data collection, causing a concomitant increase in the time required to acquire
an image. This time can be used to acquire images from the same or other
locations at different points within the heart cycle without an additional time
penalty, however.

Respiratory motion is generally not as predictable as cardiac motion and
occurs over a different time scale. Three basic strategies have been used to
overcome image degradations. For relatively rapid two-dimensional techniques
that can be acquired in fewer than 15 to 20 heartbeats, subjects are instructed
to hold their breath for the duration of the scan. Longer scans can be achieved
with repeated breath-holding, though this requires a consistent breath-hold
position on the part of the subject to achieve optimal results. Respiratory
triggering is another option, whereby data are acquired only during a lim-
ited part of the respiratory cycle (analogous to cardiac triggering). A more
sophisticated method for lengthy 2D and 3D acquisitions is navigator gating
[5, 6]. For each image data acquisition, an additional set of pulses determines
the position of the diaphragm and adjusts the imaging plane and data ac-
quisition to minimize or track this motion. This permits high-resolution and
artifact-free images while the subject breathes freely.

Recently developed real-time imaging strategies can acquire a complete
image in a matter of milliseconds, eliminating the need for either type of
motion suppression [7]. Such techniques still remain limited in the resolution
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and signal-to-noise ratio (SNR) that can be achieved and cannot yet replace
the more time-consuming scan protocols.

Cardiac Morphology

The most basic use of cardiac MRI is to depict the structure or morphol-
ogy of the heart. Two general classes of imaging techniques are widely used
for cardiac imaging, commonly referred to as black-blood and bright-blood
techniques.

Black-Blood Imaging. Black-blood images are produced by T2-weighted
spin-echo (SE) imaging sequences, in which two RF excitations (an excitation
pulse and an inversion pulse) are applied to the imaged volume [4]. After the
excitation pulse, the excited spins begin to lose coherence due to slight vari-
ations in their resonant frequencies, resulting in a rapid loss of overall signal.
The inversion pulse “flips” the magnetization about one of the axes permitting
these spins to regain their coherence and generate an echo when the signal
has been restored. When the two pulses are separated by a sufficient interval,
flowing blood experiences only one of these pulses and thus does not produce
a restored signal echo, leaving a flow void in the chambers of the heart. The
timing of the two RF pulses sets the echo time (TE) at which the signal refo-
cuses (and data are acquired) and determines the precise signal and contrast
features of the image. For black blood imaging, a TE of at least 20 msec is
usually used. A longer TE yields greater contrast based on T2 characteristics
of the tissues, which may be useful to identify such lesions as acute myocardial
infarction or myocardial scar. This comes at the expense of reduced overall
signal due to signal decay. Standard SE sequences show excellent contrast
among myocardium (medium intensity), epicardial fat (high intensity), and
flowing blood (low intensity). The signal void created by SE sequences gener-
ates images with especially good contrast in endocardial regions, valves, and
vessel walls.

The main limitation of standard SE sequences is the acquisition time re-
quired in a cardiac-triggered exam, which results in poor temporal resolution
and the prospect of significant respiratory motion artifact. Fast SE (FSE)
sequences overcome this limitation by applying multiple inversion pulses and
additional signal readouts during a single cardiac cycle. Speedups of an order
of magnitude are possible in this way. However, the longer readout times de-
grade the image contrast due to the more complex dependence on relaxation
times.

The currently preferred black-blood technique for imaging cardiac mor-
phology is a T2-weighted inversion recovery (IR) pulse sequence [8]. This
sequence applies additional RF excitation pulses to effectively null the signal
from blood (and possibly fat as well) based on its T1 relaxation parameters.
This is usually followed by a FSE sequence that can be acquired in 15 to
20 heartbeats, suitable for a breath-held acquisition and yielding a robust
black-blood sequence with T2 contrast.
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Bright-Blood Imaging. Bright-blood images originate from gradient
echo (GRE) imaging sequences which only use a single RF excitation, relying
on the gradient hardware instead of an inversion pulse to refocus the signal
for data acquisition. Much shorter TE times (1–10 msec) are used, and the
excitation and data readouts can be repeated more frequently (every 10–20
msec). Because blood need only experience the single RF pulse to generate a
signal, it appears brighter than myocardium on GRE acquisitions. The short
TE between excitation and data readout enhances this effect since there is less
time for signal decay due to relaxation. Additional flow-compensation pulses
can also be applied to further enhance blood signal and improve contrast with
nearby myocardium. As with FSE imaging, the fastest imaging sequences uti-
lize multiple excitations and data readouts over an extended interval (80 msec
is a typical duration) synchronized to the cardiac cycle to generate images that
can be acquired within a breath-holding interval [9]. Contrast between blood
and myocardium is generally not as good as with SE imaging, as varying flow
profiles may result in heterogeneous blood pool.

The availability of faster gradient hardware has seen a resurgence of tech-
niques based on steady-state free precession (SSFP) [10]. SSFP maximizes
the use of signal from blood by applying rapid excitations repeated at very
short intervals. The resulting contrast is a function of relaxation parameters
as T1/T2. The short repetition times greatly reduce flow effects and show a
more homogeneous depiction of myocardial blood pool, which in turn improves
contrast with myocardium and visualization of papillary muscles. Rapid ex-
citations also permit better temporal resolution [11, 12], or the time savings
can be traded off for higher resolution at the same time resolution. As state-
of-the-art MR gradient hardware proliferates, SSFP will likely become even
more common.

The rapid repetition of readouts in both GRE and SSFP mean that several
images at the same location can be taken at different time points within the
heart cycle. Alternatively, the imaging time can be used to acquire multiple
slices at a reduced temporal resolution. Using segmented acquisitions, a multi-
slice multiphase view of the cardiac morphology can be acquired within a
single breath-hold of 15 to 20 heartbeats.

Cardiac Function

Many of the techniques mentioned above for imaging of cardiac morphology,
including both black-blood and bright-blood imaging, are also suitable for
measuring cardiac function indices as well. Compared to other modalities,
MRI has the advantage that completely arbitrary image orientations can be
chosen, guaranteeing that true long-axis or short-axis views serve as the basis
for quantitative measurements. The availability of three-dimensional informa-
tion in the form of multiple parallel slices eliminates the need for any geometric
assumptions about ventricular anatomy when estimating masses and volumes,
a significant advantage over x-ray and ultrasound.
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Bright-blood GRE imaging is more commonly used for evaluation of ven-
tricular function. The shorter acquisition time permits a greater number of
slices to be acquired during the cardiac cycle, which can be used for higher
temporal resolution (more frames per cycle) or for a greater volume cover-
age (more slice locations). The acquisition of images at multiple phases of
the cardiac cycle is known as cine MRI (example shown later in Figure 7.8)
[13]. With present system hardware, a complete multislice multiphase cine
data set suitable for quantitative analysis can be acquired in a single breath-
hold interval. The limiting factor with standard GRE imaging is the contrast
between medium-intensity myocardium and the bright blood pool. Areas of
slower flowing blood will demonstrate reduced intensity making delineation of
the endocardial contours difficult.

The recent advances in SSFP imaging cited above may solve this problem
to some degree with its more robust contrast. The faster repetition time used
in SSFP also increases the frame rates possible in a cine study. With state-of-
the-art gradient hardware, truly 3D cine MRI with no gaps between slices is
now possible within a single breath-hold interval [14, 15].

Improving gradient and computing hardware has now made real-time imag-
ing feasible for functional imaging. Rates of 16 frames per second or more
can be continuously obtained much like x-ray fluoroscopy [7]. The scan plane
can be modified directly on the real-time images, dramatically reducing the
time required for “scout” scans to find the proper short-axis orientation. At
such rates, cardiac gating and breath-holding are unnecessary, which permits
imaging of patients with arrhythmias. Presently, spatial resolution of real-time
studies remain comparatively limited, but a number of ongoing developments
in image reconstruction techniques are improving this. Two such strategies
exploit the widespread use of multiple receiver coils. Simultaneous acquisition
of spatial harmonics (SMASH) [16] and sensitivity encoding (SENSE) [17]
use the spatially varying response of a group of coils as an additional means
of spatial encoding to reduce the time needed to acquire a given resolution
image. Other techniques analyze the temporal dimension of the acquisition to
reduce the acquisition of redundant information and enhance either temporal
or spatial resolution [18].

Each of these forms of cine and real-time MRI data are useful for com-
puting several global measures of cardiac function. Accurate and reproducible
quantitative measurements of ventricular volumes at both systole and dias-
tole, masses, and ejection fraction (difference between the diastolic and sys-
tolic ventricular volumes) are all computable with multislice or volume data
sets. In each case, myocardial border identification is necessary to extract
quantitative results. Compared to x-ray and ultrasound, MRI also accurately
depicts epicardial borders, again eliminating the geometric assumptions that
often must be made in competing modalities. As a result, regional myocardial
function assessments can also be made with cine techniques. This may be
done subjectively viewing cine or real-time “loops” or through quantitative
measurements of regional wall thickness and strain.
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Regional measurements of three-dimensional strain is possible using my-
ocardial tagging. This imaging method excites myocardium with a pattern of
lines or grids whose motion can then be tracked over the heart cycle, provid-
ing a precise depiction of the deformations occurring within the myocardial
tissues. Analysis of these deformations in short- and long-axis views gives
3D strain measurements useful for determining local myocardial function. A
promising rapid technique is harmonic phase (HARP) imaging which has po-
tential as a real-time technique [19].

Myocardial Perfusion

Another important indicator that can be assessed by MRI is regional blood
flow (or perfusion) in the myocardium. This may indicate areas of damage
to myocardium from a cardiac event or insufficient blood flow resulting from
a significant arterial stenosis. Determination of blood flow within the my-
ocardium depends on the use of contrast agents (usually gadolinium-based)
that change the relaxation characteristics of blood, particularly the T1 relax-
ation time [20]. Gadolinium causes a considerable shortening of the T1 re-
laxation time, meaning that magnetization returns to equilibrium much more
rapidly. As shown in Figure 7.3, when RF excitation pulses are applied in rapid
succession, tissues with short T1 relaxation will still have time to recover and
generate greater signal for subsequent excitations. Longer T1 relaxation times
means that little magnetization has returned to the equilibrium state, so later
excitations result in much less signal. Appropriate timing of a pair of RF
pulses can maximize the signal difference between two tissues with known T1
relaxation times.

Perfusion is mostly measured during the “first pass” into the myocardium
after injection of contrast agent [21, 22]. Areas of myocardium with adequate
blood flow will have enhanced intensity from the shortened T1 of the inflowing
blood. Perfusion deficits will not receive this material and remain at lower
intensity. The time of the imaging window is limited as contrast material may
soon begin to diffuse from normal to deficit regions, and the contrast agent
will recirculate with the blood within 15 seconds. Hence, rapid GRE sequences
are used to image quickly and permit multiple slices to be obtained over a
volume. T1 contrast is maximized by applying an RF “preparation” pulse
that initially excites or saturates all of the blood and tissues. After a delay
time that causes contrast-enhanced material to return towards equilibrium
while the longer T1 tissues recover much less magnetization to yield strong
T1 contrast, a standard fast GRE imaging sequence is applied. The result is
bright signal in normal tissue and low-intensity regions of perfusion deficit.
Acquisition of several time frames during this process permits quantitative
measurements of the severity of these perfusion abnormalities.

Further myocardial tissue characterization is possible using gadolinium
contrast agents by waiting a considerable duration (20 min or more) before
imaging [22, 23]. Gadolinium contrast will eventually move to the extracellular



Chapter 7 Cardiovascular MR Image Analysis 201

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Lo
ng

itu
di

na
l M

ag
ne

tiz
at

io
n

0.0

T1

T1

5T1

5

Figure 7.3. Generation of T1-based contrast. A typical RF excitation causes the
longitudinal magnetization to go to zero, followed by recovery via T1 relaxation. The
amount of recovery depends on the T1 time constant and determines the amount of
signal available for imaging during the next excitation. When the repetition time is
brief, short T1 species will recover and generate much greater signal than longer T1
species.

space and accumulate more in areas of nonviable myocardium, resulting in
enhanced signal in these areas on T1 weighted images compared to normal
tissue.

Angiography

In addition to imaging of the heart, MRI has also been widely applied to
imaging vessels throughout the body. Its advantages over conventional X-ray
angiography go beyond the fact that it is much less invasive. MRI can also
collect true 3D data, permitting arbitrary selection of views and slices in post-
processing to optimize the visualization of vessels. This is especially helpful
in complex vascular trees where tracing the vessel of interest may be difficult.
Contrast for MR angiography can be developed in two ways. Pulse sequences
may exploit the different signal properties of flowing and stationary tissues
to produce images. Other sequences rely on the relaxation characteristics of
arterial and venous blood, usually enhanced by T1-shortening contrast agents
as described for myocardial perfusion. In both cases, the goal is to generate
images of the vessel lumen suitable to detect and evaluate stenoses.

Two flow-based imaging techniques are in common use for MR angiogra-
phy and both effectively produce “bright-blood” images of the vessel lumen.
Phase-contrast (PC) imaging takes advantage of the fact that flowing blood
will move during the data acquisition readout. Since spatial information is
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encoded by a spatially varying magnetic field gradient, flowing spins expe-
rience a changing magnetic field as they move, resulting in a phase change
in their signal compared to stationary tissues. By applying an appropriate
encoding gradient pattern prior to imaging, flowing blood can be selectively
viewed. PC imaging can also quantitatively measure flow velocities. Time-
of-flight (TOF) imaging uses the continuous replacement of flowing blood in
the imaged slice to differentiate it from static tissue. Rapid repetition of ex-
citation pulses covering the imaged slice saturates and eventually eliminates
signal from stationary material because there is not enough time to regain any
equilibrium magnetization. Flowing blood retains a signal since fresh unsatu-
rated blood is constantly flowing into the slice to be excited and flows away
again before saturation can be complete. The result produces high signal from
flowing blood against the low intensity of background structures.

Reliance on flow for image contrast may introduce artifacts where flow pat-
terns are not ideal. Such anomalies will affect both PC and TOF sequences.
Areas of slow flow may have reduced signal, either due to reduced phase
changes for PC or saturation in TOF. Complex flow patterns and turbulence
can also cause reduced intensities within the vessel lumen in both cases. The
consequences could include stenoses that are overestimated or a false appear-
ance of an occlusion of the vessel.

The limitations of flow-based angiography have made flow-independent
techniques more prevalent. It is possible to create high-contrast angiographic
images using only the intrinsic T1 and T2 relaxation characteristics of blood
using a variety of “prepared contrast” pulses that saturate or suppress one
or more background tissues [24]. However, injectable contrast agents such
as those based on gadolinium compounds have proven to be safe and well
tolerated and are widely available. These contrast agents dramatically reduce
the T1 relaxation time of blood and greatly enhance its signal on TOF images.
Much of MR angiography is now dominated by contrast-agent-based protocols.

Once again, the main limiting factor in contrast studies is the time before
the contrast agent leaks outside the blood vessels and begins to enhance the
signal in tissues other than blood. Successful contrast angiography therefore
requires careful timing of contrast injection and image acquisition and a rapid
acquisition technique to minimize artifacts due to contrast dispersion and res-
piratory motion. Fast 3D GRE imaging is most commonly used to acquire the
T1-based contrast to yield bright contrast-enhanced blood pool. Subtraction
of a non-contrast-enhanced volume may also be used to further suppress back-
ground structures. A variety of strategies have been employed to reduce the
imaging time to acquire a 3D data set even further and assure accurate tim-
ing of the acquisition. Partial acquisition methods which acquire 60–75% of a
full data set and synthesize the rest based on mathematical assumptions can
help reduce imaging times. More extreme versions of this have been applied
to radial sampling patterns to reduce acquisition time even further, trading
the shortened time for some increased and coherent background noise [25].
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The timing of the acquisition relative to the injection of contrast agent is
also crucial. If the data acquisition occurs too early, the signal will not yet
be enhanced, while a late acquisition will show poor contrast because of a
heightened signal from other tissues or veins. For many applications, a fixed
time delay based on previous experience may be sufficient, although increased
doses of contrast often accompany this technique to increase the window of
enhancement. A much smaller dose of contrast may be given and tracked with
a sequence of rapid 2D images used to pinpoint the transit time prior to a full
3D acquisition. Automatic monitoring of the signal at a predefined location
upstream from the desired location has also been implemented. The use of
real-time imaging to monitor contrast passage is another possibility.

The limited volume imaging time available because of the dispersion of
contrast agent into other tissues is currently being addressed. New intravas-
cular contrast agents that do not leak into tissues during the course of a
typical MR exam are being perfected by a number of researchers [26, 27]. As
a result, their T1 shortening properties can be utilized for longer or multi-
ple exams without the enhancement of background tissues. MR angiograms
in higher-resolution 3D or over the whole body then become possible. The
longer persistence in the blood pool does mean that both arteries and veins
will be displayed for longer 3D scan durations. Some means of separating the
two may be needed for diagnostic use of such images.

Coronary artery imaging may be a particular beneficiary of such contrast
agents, as the necessity of high-resolution, 3D coverage, and motion correction
requires longer scan times than are feasible with standard contrast material.
The flow and saturation effects that often compromise 3D techniques are also
improved with such contrast agents [28]. Perfection of a minimally invasive
coronary MR imaging is of particular interest because of the number of highly
invasive x-ray angiography procedures that are performed that show no clin-
ically significant disease.

In summary, MR imaging shows tremendous promise to assess virtually all
areas of cardiovascular health. While the much-heralded ascendance of MRI
as the “one-stop shop” for noninvasive cardiovascular imaging has not yet
come to pass, the current state-of-the-art and continued advances in cardiac
MRI still point towards such a possibility.

7.3 Cardiac MR Segmentation

The rapid development of cardiac magnetic resonance (MR) acquisition tech-
niques as described in the previous section has created a vast diagnostic poten-
tial, and within one patient examination, several aspects of cardiac function
can be evaluated. A major bottleneck for cardiac MR methods in routine
clinical practice however, is the prohibitively large amount of data involved in
a comprehensive patient examination (typically between 2000 and 5000 im-
ages). Therefore, to utilize the full diagnostic potential of cardiac MR, highly
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automated quantitative analysis is essential; hence image segmentation is of
primary importance to further advance the clinical utility of cardiac MR.

Though much effort has been directed to automated segmentation of car-
diac MRI image data, there are three main reasons why existing methods
frequently exhibit a lower success rate in comparison with human expert ob-
servers, especially when applied to clinical-quality images — existing methods
do not incorporate a sufficient amount of a priori knowledge about the seg-
mentation problem; do not consider 3D or temporal context as an integral
part of their functionality; and position the segmentation boundaries at lo-
cations of the strongest local image features not considering true anatomical
boundary locations.

7.3.1 Cardiac Segmentation Approaches

A number of 3D medical image analysis approaches occurred recently, many of
them addressing one or more of the above-mentioned shortcomings of available
segmentation techniques. A detailed review of existing 3D cardiac modeling
approaches is provided in [29]. In the context of our work and considering
the goal of segmenting 3D volumetric and temporal cardiac images and im-
age sequences, statistical modeling of 3D shape and 3D image properties is
crucial. Vemuri and Radisavljevic concentrated on a 3D model that combines
deformed superquadric primitives with a local displacement field expressed on
an orthonormal wavelet basis [30]. As a result of this orthonormal basis, the
shape parameters become physically meaningful, and thus a preferred shape
can be imposed based on parameter distributions in a set of training samples.
Similarly, Staib and Duncan developed a 3D balloon model [31]. The model
is parameterized on an orthonormal Fourier basis such that the statistics of
the Fourier coefficients in a training set allow a constrained image search.
Model fitting in these two methods is performed by balancing an internal
energy term with an external, gradient derived, scalar field. Metaxas et al.
introduced physics-based deformable models for modeling rigid, articulated,
and deformable objects, their interactions with the physical world, and the
estimate of their shape and motion from visual data [32, 33].

Cootes and Taylor and colleagues developed a statistical point distribu-
tion model (PDM) and demonstrated its utility for 2D image segmentation
[34, 35]. One of the primary contributions was an ease of automated learn-
ing of the model parameters from sets of corresponding points as well as the
PDM’s ability to incorporate shape and boundary gray level properties and
their allowed variations. Applications to segmentation of echocardiographic
data [36] and deep neuroanatomical structures from MR images of the brain
may serve as examples [37]. Following the point distribution model ideas,
Kelemen et al. built a statistical model of 3D shapes using parametric surface
representations [38]. Similar to PDMs, shape and gray level information in the
boundary vicinity was incorporated in the model. The method’s performance
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was demonstrated on 3D segmentation of neuroanatomical structures. A mul-
tiscale 3D shape modeling approach called M-reps was developed by Pizer
et al. [39]. M-reps support a coarse-to-fine hierarchy and model shape varia-
tions via probabilistically described boundary positions with width- and scale-
proportional tolerances. Three-dimensional echocardiographic image segmen-
tation using core atoms was reported by Stetten and Pizer[40]. Davatzikos et
al. presented a deformable model in which geometric information is embedded
via a set of affine-invariant attribute vectors; these vectors characterize the
geometric structure around a model point from a local to global scale, forming
an adaptive focus deformable statistical shape model [41]. The methodology
was applied to segmentation of neuroanatomical structures.

In all the above-referenced approaches, the models primarily hold infor-
mation about shape and its allowed variations. The information about image
appearance is only considered in a close proximity to the object borders.
A powerful, model driven segmentation technique called active appearance
model (AAM) was recently introduced by Cootes and coworkers [42, 43, 44].
An AAM describes the image appearance and the shape of an object in a set
of examples as a statistical shape-appearance model. AAMs can be applied
to image segmentation by minimizing the difference between the model and
an image along statistically plausible shape/intensity variations (analysis by
synthesis). AAMs have been shown to be highly robust in the segmentation of
routinely acquired single-phase, single-slice cardiac MR [45] and echo images
[46], because they exploit prior knowledge about the cardiac shape, image ap-
pearance, and observer preference in a generic way. For a detailed background
on active appearance models and their application to image segmentation, the
reader is referred to [43].

Two-dimensional active appearance motion models [45, 47, 46] have demon-
strated the ability of time-continuous segmentation by exploiting temporal
coherency in the data. However, these 2D + time AAMs do not represent a
true 3D approach. Their segmentation ability is limited to cases with fixed
numbers of preselected frames; they rely on a priori knowledge of image frame
correspondences within each cardiac cycle. The 3D model presented below is
the first such to date capable of successful segmentation of cardiac MR im-
ages [48]. The model’s behavior is learned from manually traced segmentation
examples during an automated training stage. The shape and image appear-
ance of the cardiac structures are contained in a single model. This ensures
a spatially and/or temporally consistent segmentation of three-dimensional
cardiac images.

Point Distribution Model Concept

Point distribution models describe populations of shapes using statistics of
sets of corresponding landmarks of the shape instances [34, 35, 49]. By align-
ing N shape samples (consisting of n landmark points) and applying a prin-
cipal component analysis (PCA) on the sample distribution, any sample x
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within the distribution can be expressed as an average shape x with a linear
combination of eigenvectors P superimposed

x = x + Pb. (7.1)

In 2D models, p = min(2n, N − 1) eigenvectors P form the principal basis
functions, while in a 3D model; p = min(3n, N − 1) eigenvectors are formed.
(The minimum operator is needed since we frequently have more correspond-
ing shape points than training set samples.) In both cases the corresponding
eigenvalues provide a measure for compactness of the distribution along each
axis. By selecting the largest q eigenvalues, the number of eigenvectors can be
reduced, where a proportion k of the total variance is described such that

q∑
i=1

λi ≥ k · Total where Total =
p∑

i=1

λi. (7.2)

7.3.2 Representing the Shape of 3D Cardiac Ventricles

Extending the 2D PDM to three dimensions is a nontrivial task. In order to
create a compact and specific model, point correspondences between shapes
are required. Even if landmark points are easily identifiable in both mod-
els, specifying a uniquely corresponding boundary surface built from points
in between these landmarks is difficult in 3D. In a 2D case [45], a bound-
ary sequence of points may be identified by evenly sampling points spanning
from one landmark to the next. In a 3D case, defining a unique sampling of
the object surfaces is ill-posed but the problem can be solved in simplified
geometries. An approach like that was used for left-ventricular segmentation.

For the purpose of ventricular segmentation, a normalized cylindrical co-
ordinate system is defined with its primary axis aligned with the long axis of
the heart, and the secondary axis aligned with the posterior junction of the
right and left ventricles in the basal slice. The cardiac ventricles resemble a
cylindrical or paraboloid shape. First, contours are sampled slice-by-slice at
even angle increments. To transform the rings in the normalized cylindrical
coordinate system, each point on the ring is connected by a straight line to
the next adjacent corresponding point on the rings above and below. Starting
from the apex slice to the basal slice, a fixed number of slicing planes are
placed evenly along the long axis. Apex slice was defined as the most inferior
slice with a visible left ventricular cavity, slices with merely a small muscle
cap were excluded. New points are interpolated where the planes intersect the
lines. This yields a set of corresponding boundary points for each sampled left
ventricle across the population of ventricles (Figure 7.4).

7.3.3 Three-Dimensional Point Distribution Models

Aligning shape samples to a common scale, rotation, and translation is impor-
tant for a compact model to be generated during the PCA stage. Procrustes
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Figure 7.4. A cross-sectional depiction of transforming a cardiac MR stack with
manually placed landmarks to a normalized cylindrical coordinate system.

analysis [50, 51] is used whereby an arbitrary shape is selected as the initial
average shape estimate. All the other shapes are aligned to this average using
a least-squares minimization. A new average is computed by a simple mean
across the corresponding points, and the algorithm repeats until convergence.

For the 2D case, aligning one shape to another can be solved analyti-
cally by minimizing scale, rotation, and translation terms. Extending to 3D,
the minimization of scaling, translations, and rotation differences along the
three axes may lead to singularities known as gimbal lock. Assuming that 3D
translation is represented by a separate translation vector t, a quaternion q
representation of scaling and rotation avoids such behavior [52].

A quaternion q is defined as the linear combination of a scalar term q0 ≥ 0,
and three right-handed orthonormal vectors (i, j, and k) :

q = q0 + q1i + q2j + q3k. (7.3)

Together, the position and orientation of a 3D object can be represented as a
seven-element pose vector (q|t) = [q0, q1, q2, q3, ti, tj , tk].

The alignment of two 3D shape instances is accomplished using a well-
known procedure given by Besl and McKay [53] to optimize for q and t.
Aligning all the shapes is a matter of employing the Procrustes analysis using
Besl’s procedure to calculate the pose parameters. Once shape alignment is
finished, principal component analysis is applied to the 3D models in a way
that is no different from the conventional 2D application [35].

7.3.4 Modeling Volume Appearance

The first part of creating an appearance model of volume is to warp all the
sample volumes to the average shape to eliminate shape variation and bring



208 Milan Sonka et al.

Apex

Base

Figure 7.5. A wireframe representation of the mean LV shape in the normalized
cylindrical coordinate system.

voxelwise correspondence across all the training samples, such that the voxel
intensities can be represented as a shape-free vector of intensity values. Warp-
ing an image I to a new image I′ involves creating a function which maps con-
trol points xi to x′

i as well as the intermediate points in between. For the 2D
case, either piecewise affine warping or thin-plate spline warping is adequate.
In our models piecewise warping is preferred because it is significantly faster
than thin-plate spline warping.

In 2D piecewise affine warping, landmark points are used to construct
the shape area as a set of triangles. The well-known Delaunay triangulation
algorithm is suitable for computing such a triangular mesh and can be found
in many computational geometry references. Individual triangular patches are
locally warped using barycentric coordinates. Given a triangle with the three
corners, x1, x2, and x3, we can represent any point x within the triangle as
x = αx1 + βx2 + γx3 where γ = 1 − (α + β) and α + β + γ = 0. In order for
a point x to fall inside a triangle, 0 ≤ α, β, γ ≤ 1 must be true.

Piecewise affine warping is implemented as follows:

• For each pixel location x′ in I′:
– Find the triangle t′ which contains x′ by solving α, β, and γ for each

triangle and finding the triangle where 0 ≤ α, β, γ ≤ 1.
– Find the equivalent pixel location x by computing x = αx1+βx2+γx3

where x1, x2, and x3 are the triangle points from the original image.
– Copy the pixel value in I located by x into the warped image I′ located

at x′. Some form of pixel interpolation such as bilinear may be used at
this stage.

In our 3D models, piecewise affine warping is extended to tetrahedrons
with four corners, x1, x2, x3, and x4. Any point within the tetrahedron is
represented as x = αx1 +βx2 +γx3 + δx4. In a general case, creating a tetra-
hedral representation of volume is solved using a 3D Delaunay triangulation
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Figure 7.6. Definition of myocardial block primitives from concentric wedges.

Figure 7.7. Decomposition of a cube (above) and a wedge (below) into tetrahe-
drons.

algorithm. However due to the cylindrical nature of the LV shape, a manually
defined volume partitioning in regular tetrahedrons was utilized. Each slice
level is constructed of pie-shaped wedges built on three tetrahedrons with ex-
terior profile cubes built with five tetrahedrons (Figures 7.6, 7.7). Piecewise
affine warping is implemented in a similar fashion as the 2D case. Because all
volumes are warped to the average volume, barycentric coordinates, α, β, γ, δ
are precomputed for each fixed voxel point eliminating the time-consuming
process of searching for the enclosing tetrahedron for each voxel point during
the matching. Due to the regular geometry of the tetrahedrons in our vol-
ume partitioning, the barycentric coordinate computation did not become ill
posed.

After the warping phase, the shape-free intensity vectors are normalized
to an average intensity of zero and an average variance of one to remove
the effects of brightness and contrast variations across scans. Next, PCA is
applied to the shape-free intensity vectors to create an intensity model. In
agreement with the AAM principle, shape information and intensity infor-
mation are combined into a single active appearance model. Lastly, another
PCA is applied to the coefficients of the shape and intensity models to form
a combined appearance model [54].
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In the equations below, the subscript s corresponds to shape parameters
while the subscript g represents intensity (gray-level) parameters. To summa-
rize, the 3D AAM is created as follows:

1. Let xi denote a vector of 3D landmark points for a given sample i. Com-
pute a 3D PDM and approximate each shape sample as a linear combina-
tion of eigenvectors, where bs = PT

s (x − x) represents the sample shape
parameters.

2. Warp each image to the mean shape using a warping such as piecewise
affine or thin plate spline warping to create shape-free intensity vectors.

3. Normalize each intensity vector, applying a global intensity transform with
parameters hi, to match the average intensity vector g.

4. Perform a PCA on the normalized intensity images.
5. Express each intensity sample as a linear combination of eigenvectors,

where bg = PT
g (g − g) represents the sample shape parameters.

6. Concatenate the shape vectors bs and gray-level intensity vectors bg in
the following manner

b =
(

Wbs

bg

)
=
(

WPT
s (x − x)

PT
g (g − g)

)
, (7.4)

the weighting matrix W is a diagonal matrix relating the different units
of shape and intensity coefficients.

7. Apply a PCA to the sample set of all b vectors, yielding the appearance
model

b = Qc. (7.5)

7.3.5 Active Appearance Models: 3D Matching

Matching an appearance model to image data involves minimizing the root-
mean-square intensity difference between the image data and appearance
model instance by modifying the affine transformation, global intensity pa-
rameters, and the appearance coefficients. A gradient descent method is used
that employs the relation between model coefficient changes and changes in
the voxel intensity difference between the target image and synthesized model
[54]. This relation is derived during a training stage.

Let t and q represent the translation and quaternion transformation pa-
rameters, and h the intensity transform parameters. As shown above, shape
x is derived in the target image from the appearance coefficient c and the
affine transformation vectors t and q. Then, shape intensity vector gs is sam-
pled from the target volume data after warping the space defined by x to the
mean shape x. The model intensity vector gm is derived from the appearance
coefficients c with the global intensity corrected via h. The error function, E,
is the root-mean-square difference of gs − gm.
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Gradient descent optimization requires the partial derivatives of the error
function defined by the intensity of the target and synthesized model volume.
While it is not possible to create such a function analytically, these derivatives
may be approximated using fixed matrices computed by randomly perturb-
ing model coefficients for a set of known training images and observing the
resulting difference in error images [54]. Using a set of training images, their
corresponding modeling parameters c, t, q, and h are randomly displaced,
thus creating a difference between gs and gm. From the parameter displace-
ments and the resulting difference intensity vectors, gradient approximating
matrices Ac, At, Aq, and Ah can be determined using reduced-rank multi-
variate linear regression. Alternatively, the gradient matrices may be built
one column at a time by averaging the Gaussian weighted differences between
the target and synthesized image of each individual model perturbation. The
latter method is preferred for 3D AAM matching due to lower memory re-
quirements, better representation of high-order eigenmodes, and faster com-
putation. This iterative refinement technique of precomputed fixed matrices
versus brute force gradient descent optimization was formulated by Cootes
[43] as well as by Baker and Matthews [55]. Formally, the gradient matrices
are created as follows:

1. Select an object from the training set with known appearance model pa-
rameters c0, t0, q0, and h0.

2. For each element in the model parameters, c, t, q, or h, perturb a single
element by a fixed δp with the rest of δc, δt, δq, and δh assigned to zero.
Typically, c is perturbed within ±1.5 standard deviation, t by 3-5 voxels,
and q, h by 10% of their original value.

3. Let c = δc + c0. Compute shape x and texture gm.
4. Apply an affine transformation to x by first transforming x using δt and

δq, then transforming the result by t0 and q0. This cascaded transform
is required to maintain linearity.

5. Create the image patch gs warped from the target image to the mean
shape using shape x.

6. Apply global intensity scaling to gs by using δh first and then scaling the
result by h0.

7. Compute δg = gs − gm.
8. Compute the slope, δs = δg/δp. Weight the slope by a normalized Gaus-

sian function with the ±3 standard deviation is set to the maximum and
minimum model perturbation values.

9. Accumulate the slope with previous slopes for that given element.
10. Go to step (2) and repeat until all elements and perturbations of each ele-

ment are sufficiently covered. Place the average slope into the appropriate
column in the gradient matrices Ac, At, Aq, or Ah.

11. Go to step (1) and repeat until there is sufficient coverage of displacement
vectors.

The corresponding model correction steps are computed as
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δc = Ac (gs − gm) , (7.6)

δt = At (gs − gm) , (7.7)

δq = Aq (gs − gm) , (7.8)

δh = Ah (gs − gm) . (7.9)

Matching the AAM to the image data is accomplished as follows:

1. Place the mean appearance model (c,h = 0; t,q defined by the initial
model position) roughly on the object of interest and compute the differ-
ence image gs − gm.

2. Compute the root-mean-square (RMS) error of the difference image, E.
3. Compute the model corrections δc, δt, δq, and δh from the difference

image [Equations (7.6)–(7.9)].
4. Set k = 1.
5. Compute new model parameters as c := c−kδc, t := t−kδt, q := q−kδq,

and h := h − kδh.
6. Based on these new parameters, recompute gs − gm and find the RMS

error.
7. If the RMS error is less than E, accept these parameters and go to step

(2).
8. Else try setting k to 1.5, 0.5, 0.25, 0.125, etc., and go to step (5). Repeat

steps (5)–(8) until the error cannot be reduced any further.

7.3.6 Case Study

To investigate the clinical potential of the 3D active appearance model un-
der clinically realistic conditions, AAM’s were trained and tested in multislice
short-axis cardiac magnetic resonance images collected from 38 normal sub-
jects and 18 patients yielding a total of 56 short-axis 3D cardiac MR data sets.
Patients were selected suffering from different common cardiac pathologies
(amongst others, different types of myocardial infarction, hypertrophic car-
diomyopathy, arrhythmia). Images were acquired using standard ECG gated
fast field echo MR pulse sequences on a Philips Gyroscan NT 15 scanner. Slices
were acquired in a per-slice manner, under breathhold in end-expiration. End-
diastolic images were used in this study. Image resolution was 256×256 pixels,
with a field of view of 400–450 mm, slice thickness 8–11 mm. Between 8 and 14
slices were scanned to at least cover the entire left ventricle, depending on LV
dimensions and slice spacing.

In midventricular short-axis MR images, the left ventricle can usually be
identified as an approximately circular object (Figure 7.8a). This fact is used
for automated initialization of the 3D AAM. A previously validated Hough
transform based method determines a 2D centroid of the LV long axis for each
MR image slice [56]. A 3D centroid of a line segment fitted through the 2D
centroids of individual MR slices defines the initial position of the 3D AAM.
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(a)

(b)

Figure 7.8. Example cardiac MR images used for validation. (a) Left-ventricular
segmentation was performed in volumetric images consisting of 8–12 full-size MR
images like the one shown here. (b) Subimages depicting LV detail in all 9 images
of this volumetric data set. See Plate I for the segmentation results.
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To make the 3D segmentation procedure completely independent from any
user interaction regarding the rotation and scale of the heart in the short-axis
plane, the matching process was repeatedly performed for a range of five ori-
entations and three scales. This multiple initialization is important because
AAM matching may be dependent on initial positioning since gradient de-
scent may contain local minima. The matching result yielding the smallest
quadratic intensity error was selected as the final match. The matching pro-
cedure resulted in a set of endo- and epicardial contours for each volumetric
MR image.

Left ventricular endocardium and epicardium were manually traced by an
expert observer who was blinded to the results of the computer analysis, these
borders defined the independent standard. To quantitatively assess the perfor-
mance of the 3D AAM approach, surface positioning errors were determined
comparing the automatically detected endo- and epicardial surfaces with the
independent standard. The average signed and unsigned surface positioning
errors were defined by measuring the distances between points along rays per-
pendicular to the centerline between the respective manual contours and the
computer-determined surfaces; 100 rays were used for each contour. Surface
positioning errors are expressed in millimeters as mean ± standard devia-
tion. Negative sign of the signed error value means that the automatically-
determined surface was inside of the observer-defined surface.

Three clinically important measures were calculated and used for perfor-
mance assessment: LV cavity volume, LV epicardial volume, and LV myocar-
dial mass. The volumetric indices were determined using all slices for which
both manually traced contours and computer-determined surfaces were avail-
able and were expressed in cm3. The LV mass measurements are reported
in g. Regression analysis was used to compare the computer measurements
with the independent standard.

Plate I shows an example of an automatically analyzed volumetric MR
data set. PLATES II demonstrates several stages of the model matching pro-
cess, starting with the initial model position and ending with the final fit.
Mean signed endo- and epicardial surface positioning errors were −0.46 ±
1.33 mm and −0.29 ± 1.16 mm, respectively, showing a slightly negative bor-
der detection bias. The mean unsigned positioning errors were 2.75±0.86 mm
for the endocardial contours and 2.63 ± 0.76 mm, for the epicardium, demon-
strating small absolute differences from the independent standard (voxel sizes
ranged from 1.56×1.56×8 mm to 1.76×1.76×11 mm). A very good correlation
of the manually-identified and 3D AAM-determined LV endo- and epicardial
volumes as well as correlation of computer-determined LV wall mass with
the independent standard were achieved – (y = 0.88x + 8.4, R2 = 0.94; y =
0.91x + 12.1, R2 = 0.97; y = 0.80x + 17.9, R2 = 0.82, respectively).
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7.3.7 Extension to 4D Analysis

The heart is a dynamic system making time-independent segmentation inade-
quate. Applying 3D AAM segmentation to the full cardiac cycle would require
multiple models for different phases because any temporal knowledge of the
interrelationship between frames would be lost. Several existing methods have
been developed for 3D + time cardiac segmentation taking into account the
temporal relationship between frames. For example, one technique by Jacob et
al. [57] solves temporal coherency between active shape models in echocardio-
grams through the use of a Kalman filter creating a motion model to predict
the cardiac cycle in addition to a shape model. An alternative method by
Montagnat et al. [58] segments cylindrical echocardiographic images using de-
formable models. Here temporal coherence is accomplished by reinitializing
the deformable model using the previous segmentation, while incorporating
a 4D anisotropic diffusion filter that significantly improves the spatial and
temporal information between frames.

To extend the 3D AAM framework to 3D + time, we propose to incorpo-
rate a time element to the model by phase normalizing objects to a common
time correspondence and concatenating shape and texture vectors of indi-
vidual phases into a single shape and texture vector. Such a technique has
been found efficient in 2D + time AAM and ASM models [47, 46, 59] and is
promising as a future extension of 3D AAMs.

7.4 Vascular MR Image Analysis

7.4.1 Magnetic Resonance Angiography

Magnetic resonance angiography (MRA) is a powerful clinical tool that chal-
lenges the preeminence of conventional contrast angiography — the gold stan-
dard of vascular imaging. MRA offers combined imaging of vascular and soft
tissues during a single comprehensive examination.

The automatic segmentation and labeling of the vascular structures are
motivated by the clinical desire for quantitative information about a patient’s
vascular anatomy and function. Various cardiovascular problems, including
aneurysms and stenoses, can be more accurately assessed using volumetric
information than from x-ray angiographic projections. It is time consuming
and impractical to manually segment the vessel structures to be analyzed.
This indicates the need for robust and quick methods to perform accurate
separation and identification of vascular structures within the anatomy with
a minimal amount of user interaction. This segmentation can then be used
to perform clinically useful tasks, including selective visualization (region of
interest display), and quantitation of an individual’s vascular function.
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7.4.2 Methods for Vascular MR Segmentation

The volumetric segmentation techniques were preceded by numerous attempts
to visualize vascular structures in 3D from 2D projections [60, 61, 62, 63, 64].
These approaches continue to be used in x-ray angiography. After the arrival
of MR in sufficient speed and resolution, Fessler and Macovski developed
a detailed object-based approach to the reconstruction of the arterial trees
using projections from magnetic resonance angiograms [62]. Although they
were using MR, which is inherently volumetric, they utilized concepts from
earlier research and used planar images as the basis for their reconstruction
technique. Garreau et al. further refined the mapping and biplane angiography
reconstruction issues by introducing an expert knowledge base to give a map
of the topology of the vessel paths [63]. This knowledge base was used as a
basis for structure and feature labeling of the vessel tree.

More recent work in the area of vessel segmentation uses 3D MR or CT
data sets. Clearly, similar analysis methodologies can be utilized for MRA
and CTA (computed tomography angiography). Some of the less complex
approaches involve direct segmentation of the data without modeling of the
vessel structure or explicit determination of the vessel path. An example of
such an approach can be found in [65] where abdominal aortic aneurysms
are segmented and quantified directly from the image data. The user selects
two starting points in the distal iliac arteries and the segmentation algorithm
travels in a proximal direction along the center of the vessels, determining
the lumen outline of iliac arteries and the abdominal aorta in CTA volumes.
More comprehensive segmentation of the cerebral vessels in CTA and MRA
has been accomplished using an iterative dilation approach [66]. A bounded
space dilation operation was used to build up a vessel tree. Cerebral arteries
were well segmented and the algorithm avoided inclusion of neighboring bone
structures and thin connections to adjacent regions by additional restrictions
on the growth process. This work is notable as a method which has the ability
to indicate where bifurcations of the vessels occur, as the growth front algo-
rithm can readily determine when a newly grown region is not connected in
the 3D space. Bifurcation detection is a crucial portion of the overall vessel
segmentation process, especially in algorithms that utilize topology analysis
as an aid to segmentation.

In addition to direct 3D segmentation approaches, several preprocessing
methodologies exist that are worth discussing, most notably finding central
axes of the elongated vascular structures using 3D skeletonization [67, 68, 69]
or by identifying vessel medial axes and cores [70]. A complete segmentation
and analysis package for coronary angiograms was described by Higgins et al.
[69] which used skeletonization to determine the central axes of vessel paths
in 3D CTA data sets. Segmentation and quantitation of the coronary arteries
were performed in an integrated system. The central paths determined by a
3D skeletonization algorithm were used as the guiding topological map for the
segmentation.
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Finding the central axes of vessels using a medial axis transform is another
powerful approach. The concepts of height ridges and medial axes were ex-
tended to the concept of core atoms by Pizer et al. [71, 72, 70]. They extended
the medial axis concept to gray-scale images and defined a quantifiable no-
tion of medialness — the core . A core is a locus in a space whose coordinates
are position, radius, and associated orientations [70]. Vessel central axes are
characterized by high medialness, thus relating them to cores. Core transform
finds the center of the vessel through a specific computation of the medial axis
and follows the local maxima along the path of vessel propagation as a step
in image segmentation. The concept of core atoms encapsulates information
about edge direction, radius, and shape. Each core atom holds information
about two edge elements and is located midway in between these two edge
elements. Using statistical methods, the core atoms can indicate a vessel path
or other anatomic shape [72]. Section 7.4.3 discusses this approach in more
detail.

A codimension 2 geodesic active contour approach is under development
by Lorigo et al. [73]. A mathematical modeling technique is used to represent
complicated curvelike structures of vasculature as seen in 3D MRA image data.
The segmentation task is defined as an energy minimization problem over all
3D curves. Mean curvature evolution techniques that were previously devel-
oped and implemented with level set methods [74, 75, 76] were extended to a
higher codimension and applied to segmentation of brain vessel vasculature.
While this approach needs to mature before it reaches clinical applicability, it
represents an interesting and promising direction.

Despite the fact that most of the methods employed to segment vessels
from 3D image data sets are very different in implementation, two main con-
cepts are commonly utilized. The first concept is that of determining the
center of the vessel paths. The following of a particular vessel path is the
crucial step in understanding the vessel topology that is important for seg-
mentation. The second concept is the use of some a priori knowledge about
the segmentation task. This knowledge can be used to provide a road map to
either guide the segmentation process or to identify structures with physically
relevant names. It is the application of these two major concepts that form
the basis for most of the recently developed methods that are outlined in the
following discussion.

Separation of arteries and veins is an emerging challenge in MRA analysis.
With the development of new MR contrast agents that have longer persistence
in the blood, there is the ability to image the vasculature fully enhanced and
at high resolution. These high-resolution “steady state” images have simul-
taneous enhancement of both the artery and vein blood pools (Figure 7.9).
This enhancement can be useful. However, it can also obscure critical detail
when analyzing the vessels using maximum intensity projection and other vi-
sualization strategies. Artery–vein separated images have unobstructed artery
visualization comparable to dynamic MRA scans. Nevertheless, they do not
suffer from the limited resolution that is necessary to achieve a dynamic im-
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MIP
Figure 7.9. Maximum intensity projection of a typical blood-pool contrast en-
hanced MRA data set of the abdomen and lower extremities.

age sequence. To meet the incompatible goals of high resolution with the
ability to view unobstructed arterial vessels, artery–vein separation and se-
lective visualization techniques must be developed to achieve acceptance of
contrast-enhanced MRA as an alternative to x-ray angiography. Currently,
separation of arteries and veins in MRA images is limited to research ap-
plications and manual segmentations. Recently, there has been considerable
progress and several different approaches have shown potential as a method
for artery–vein separation.

Generally, artery–vein separation methods can be divided into two cate-
gories — acquisition based methods [77, 78, 79] and postprocessing techniques
[62, 66, 67, 68, 69, 70]. Acquisition-based techniques seek to exploit various
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flow and physical properties. Phase behavior and time series acquisitions im-
age the vessels attempting to provide information about the vessel identity
directly from the imaging protocol itself. Postprocessing techniques seek to
provide the arterial–venous separations by analyzing the acquired data after
the scan is performed. These methods have to rely on information present in
the scan itself, while having the advantage of not being tied to a particular
protocol or scan type. These methods vary in complexity and all of them em-
ploy user interaction to some extent. Another postprocessing approach seeks
to segment the artery and vein using image intensity properties to determine a
membership in an artery or vein. Two representative methods of this research
are gray-scale connectivity [80] and fuzzy connectivity [81].

7.4.3 Vasculature Assessment via Tubular Object Extraction and
Tree Growing

One of the prominent characterizations of vessel shape is undoubtedly their
tubular character. As mentioned above, Pizer et al. developed a generalized
methodology for determination of central axes of tubular structures via calcu-
lation of intensity ridges, medialness, and cores in gray level images [82, 70].
This concept was applied to time-of-flight MRA images by Aylward et al. [83]
and further extended to a vascular tree representation by Bullitt et al. [84].

The main steps of the method are given in the following algorithm:

1. Vasculature assessment via tubular object extraction and tree growing.
2. Geometry-based semi-automated segmentation of the MRA volume to

extract individual vessel segments in the region of interest.
3. Comparison of the extracted vessel segments with the maximum intensity

projection of the original MRA data in the region of interest. If vessel
segments are missing, repeat step (1).

4. Iterative construction of a vessel tree.
5. 3D visualization and interactive editing of the resulting vessel tree.

Extraction of each vessel segment starts from a user-supplied seed point.
A vessel segment is a nonbranching 3D portion of the vasculature. Using the
seed point, image intensity ridges are automatically extracted utilizing user-
supplied information about the approximate width of the segmented vessel.
As a result, the medial axis (skeleton) of the vessel segment is formed. The
vessel segment’s width is determined at each point of the skeleton under the
assumption that the vessel is approximately circular. The width is calculated
to be proportional to the scale that produces maximal response from a cylin-
drical medialness measure. The vessel segmentation process is repeated for all
vessel segments in the region of interest, yielding a set of unbranched, directed
3D skeleton curves with a width associated with each point [83].

The segmentation step is complete when the maximum intensity projection
of the original MRA data agrees with the visualization of the vessel segments
resulting from the segmentation. If vessel segments are missing in the region



220 Milan Sonka et al.

of interest, the segmentation process is continued from newly identified seed
points.

Before the vasculature tree is constructed, several potential problems of
the identified vessel segments must be considered since the result of vessel
extraction may not be ideal:

• Spurious vessel segments must be eliminated.
• Excessively long vessel segments extending past one or more branches must

be divided.
• Adjacent vessel skeletons belonging to the same vessel must be connected.
• Directionality of blood flow must be determined.

All these problems are addressed during the tree construction step.
The tree construction process utilizes linear distance properties of indi-

vidual vessel segment skeletons and the image intensity of the original MRA
data. During the segment-connecting process, I and Y connections are allowed
while X connections are not. Consequently, at least one end-point of the two
segments to be connected is engaged. Tree construction starts from one or
more interactively identified tree roots. The maximum distance to be consid-
ered for establishing a connection between two segments is specified by the
user. Starting with the root nodes, a tree is constructed by iterative addition
of segments that satisfy both the distance and intensity criteria.

The sequence of forming tree segment connections is controlled by the
connection cost CC with the best possible connection being realized at each
iteration. For each two segments, one is considered a potential parent (the one
already connected to the tree root) and one is a potential child. Three pairs
of possible connections are determined and a line is constructed connecting
each pair of points in the 3D image. These lines form three axes along which
hollow cylinders are constructed with radii slightly greater than that of the
potential child segment so that the cylinder surface is positioned outside of
the child vessel. The intensity ratio is defined as a ratio of the average image
intensities of a cylinder surface and its axis. A low ratio (bright central axis
and dark cylinder surface) is considered to be evidence of a valid connection.
The connection cost is defined as a weighted sum of the linear distance LD of
the connected segments and the intensity ratio IR:

CC = LD + 4 IR . (7.10)

The connection of a minimum cost CC is identified and formed. After the
best connection from all possible ones is found, flow direction in the con-
nected segment may be reversed to agree with that of the already formed
tree. The spurious segments mentioned earlier are to a large extent removed
automatically since they fail to meet the connectivity requirements of distance
and intensity.

As can be expected, the process described above may lead to missing or
incorrect connections caused by MR imaging artifacts, a limited size of the
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imaged region of interest, or other ambiguities present in MR data. There-
fore, the resulting tree is carefully inspected and editing tools are employed
to include missing connections and remove inappropriate ones. The user is
allowed to delete proximal or distal segments and associated subtrees, delete
an entire vessel and the associated subtree, disconnect a subtree from a parent
and reconnect it to another user-specified parent or parent point, and reverse
blood flow in any segment (causing automated update of the parent-child data
structure).

7.4.4 Knowledge-Based Approach to Vessel Detection and
Artery–Vessel Separation

The following algorithm was developed to perform arteriovenous separation
in the peripheral vasculature, specifically the iliac and femoral vessels. When
analyzing intravascular contrast agent-enhanced MRA data sets that image
this area, the most challenging aspect to overcome is the partial volume effects
brought on by limited spatial resolution and the proximity of the vessels.
These effects cause the artery and vein segments to become aliased within
some voxels of the data, causing incorrect connections between the artery
and vein pathways, when in reality there is only close proximity between the
two. These incorrect connections cause simpler methodologies such as region
growing to fail in separating the arteries and veins into two distinct objects.

To cope with this problem, a knowledge-based method was developed and
tested by Stefancik and Sonka that consists of the following main steps [85],
Figure 7.10.

1. Knowledge-based segmentation of arterial and venous trees in lower ex-
tremities

2. Binary mask generation — the contrast-enhanced MRA data are seg-
mented in a 3D connected combined vessel tree (consisting of arteries and
veins) and nonvessel regions.

3. Tree-structure generation — the combined vessel tree is topologically de-
scribed as a tree structure using vessel-bounded space dilation for identi-
fication of bifurcations.

4. Optimal vessel path calculation — vascular central axes are determined
using 3D dynamic programming in a vessel-bounded space.

5. Vessel segment labeling — vessel segments are labeled as belonging to
arteries or veins.

6. Conflict resolution — if any branch segment belongs to more than one
path through the tree, individual voxels within that segment are assigned
to their appropriate paths and their anatomic labels.

These main steps will now be described in more detail.
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Segmented MRA Volume

Figure 7.10. Graphical overview of the segmentation process described in the text.

Binary Mask Generation

The combined vessel tree consisting of arteries and veins and forming a bi-
nary volumetric mask is acquired by a two-step process — percentage-based
gray-scale threshold calculation is followed by a seeded region growing. For
the abdominal region and lower extremities, the vessel structures occupy ap-
proximately 5% of the data set by volume. Therefore, 95% thresholding is
employed with a threshold value derived from a gray-level histogram [86].
As a result, virtually all vessels, some MRI artifacts, and some subcutaneous
fat regions are segmented. To remove the imaging artifacts and subcutaneous
fat from the binary mask, a seeded region growing operation follows. A seed
point is identified within a vessel structure, and all connected voxels over the
threshold value are labeled. All nonconnected voxels are then discarded. An
example of the resulting combined tree is shown in Figure 7.13(a).

Tree-Structure Generation

For a vascular structure, it is reasonable to segment the vessel volume into
vessel segments, with each segment representing a section between two subse-
quent bifurcations. The vessel segments forming a vessel tree serve as an aid to
topology analysis and as a method of grouping voxels in structural primitives
for subsequent processing.

The conditional bounded-space dilation operation of mathematical mor-
phology [86] is used in the growth front algorithm tree generation [66]. The
tree contains relevant information about continuous branch segments, and
higher-level parameters such as length and volume can be calculated from
these segments (Figure 7.11).
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(a) (b)

Figure 7.11. Tree structure representation. (a) Vessel tree with labeled branch
segments. (b) Node topology created by the bounded-space dilatation growth algo-
rithm.

Optimal Vessel Path Calculation

The complex topology of the combined tree along with multiple false bifur-
cations that are always present lead to an over-segmented tree which is not
practical to label directly. Additional information about the spatial path of
individual vessel segments is needed. The optimal vessel path is determined
using a dynamic programming path cost maximization applied to 3D cost
volumes corresponding to the analyzed 3D data set.

Vessel Segment Labeling

The optimal path calculation yields discrete paths through the volume that
tend to follow the center of the vessel. Since the artery or vein label is known
for each proximal seed point used for dynamic programming path search, this
label is propagated to all vessel segments along the identified paths. When
this labeling is performed for each path, segments may have conflicting labels
— some of the segments are labeled as belonging to both arteries and veins.
Such cases are solved by the conflict resolution step.
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a)

c) d)

b)

Figure 7.12. Conflict resolution: (a) Example area of combined artery and vein
membership in one branch (B1). (b) Branch B1 is labeled as a contention branch.
(c) Optimal paths and their radii of influence dictate voxel membership. (d) Artery
and vein segmented.

Conflict Resolution

When a vessel segment has conflicting labels, a spatial decision conflict resolu-
tion function is invoked to resolve the labeling conflict. The employed decision
function allows a specific vessel segment to label its voxels by different labels
according to their proximity to the conflicting paths that run through that
vessel segment (Figure 7.12). This effectively separates the artery and vein
connections that occur due to the partial volume effects.

The algorithm presented above was tested in artificially generated data
sets and in in vivo acquired MRA volumes that were acquired 5 minutes
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post-injection of a blood pool contrast agent2 [87]. The original image data
are shown in Figure 7.9. Automatically and manually segmented data were
compared to assess the performance of the automated method in separation
of main vessels in the abdominal and upper leg area. The artery–vein labeling
error ranged from 1 to 15%. Complete quantitative validation results can be
found in [87]. Figures 7.13(a) (b) show representative segmentation of two
different data sets. Figures 7.13(c) (d) show selective visualization of the
segmented structures from Figure 7.13(b). As indicated above, this approach
focused on the separation part and may benefit from improving the initial
binary tree segmentation. The first step of the fuzzy connectivity approach
described in the next paragraphs seems to be especially attractive for that
purpose.

7.4.5 Fuzzy Connectivity Approach to Vessel Detection and
Artery–Vessel Separation

Udupa et al. developed a fuzzy connectivity–based methodology for vessel ex-
traction and artery–vein separation. The method is based on a principle of
fuzzy connected image segmentation that was applied, e.g., to MR brain seg-
mentation, multiple sclerosis lesion detection in MR data sets, and separation
of bone and soft tissues from skin in CT images [88, 89]. This concept was
further enriched by the recent addition of scale-based fuzzy connectivity [90].

The basic principle of this approach is the notion that image intensity
information itself is insufficient for segmenting heterogeneous objects with
varying image intensities within the objects. Variations of intensities may be
caused by a plethora of reasons — imaging artifacts, noise, inhomogeneity of
the object itself, etc. All these causes are common in medical images. Udupa et
al. stated an important concept that voxels belonging to the same objects tend
to hang together, thus defining objects by a combination of spatial relationship
of their elements (pixels, voxels), at the same time considering the local image
intensity properties. The spatial relationships should be determined for each
pair of image elements in the entire image. To accomplish that, local and
global image properties are considered.

The local fuzzy relation is called affinity and represents a strength of hang-
ing togetherness of nearby image elements and has a value in [0,1]. The affinity
is a function of the spatial distance between the two nearby image elements
as well as of their image intensities or other intensity-derived features (e.g.,
edges). Fuzzy connectedness is then a global fuzzy relation that assigns ev-
ery pair of image elements E1 and E2 a value in [0,1] based on the hanging-
togetherness values along all possible paths between these two image elements.
Note that the elements E1 and E2 are not expected to be nearby. For each
path, its strength is defined as the minimum affinity value for all pairwise
elements of the path. In other words, the strength of the entire path is de-
fined by the strength of its weakest local connection. Then, the value of fuzzy
2 AngioMARK, EPIX Medical, Cambridge MA.
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a) b)

c) d)

Figure 7.13. Segmentation of main arteries and veins in an MRA data set of ab-
domen and lower extremities. See Fig. 7.9 for maximum intensity projection of this
data set. (a) Combined tree (volume rendering). (b) Main arteries and veins. (c) Se-
lective visualization of major arteries and veins from (b). (d) Segmented arterial
tree from (b).

connectedness (global hanging togetherness) of E1 and E2 is determined as
the maximum of the strengths of all possible paths between E1 and E2. The
strength of connectedness of all possible pairs of elements defining a fuzzy
connected object is determined via dynamic programming.

An approach for arterial and venous tree segmentation and artery–vein
separation was developed based on fuzzy connectivity principles [81] and ap-
plied to blood-pool contrast enhanced images3 of abdomen and lower extremi-
3 AngioMARK, EPIX Medical, Cambridge MA.
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Figure 7.14. Maximum intensity projection image of the original data used in Plate
III. Courtesy of J. K. Udupa, University of Pennsylvania.

ties. First, an entire vessel tree is segmented from the MRA data sets utilizing
absolute fuzzy connectedness. Next, arteries and veins are separated using
relative fuzzy connectedness. For the artery–vein separation step, seed im-
age elements are interactively determined inside an artery and inside a vein.
Large-aspect arteries and veins are separated, smaller-aspect separation is
performed in the following iterations, four iterations being typically sufficient.
To separate the arteries and veins, a distance transform image is formed from
the binary image of the entire vessel structure. Separate centerlines of arterial
and venous segments between two bifurcations are determined using a cost
function reflecting the distance transform values. All image elements belong-
ing to the arterial or venous centerlines are then considered new seed elements
for the fuzzy connectivity criterion, thus allowing artery–vein separation.

The vessel tree segmentation and artery–vein separation procedure is quite
fast, requiring only several minutes to complete. Figure 7.14 and Plate III show
the functionality of the method.
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7.5 MR Assessment of Atherosclerotic Plaque

7.5.1 Vessel Wall Imaging

Recent studies indicate that the composition of atherosclerotic plaque lesions
may be more important than the morphology. The depiction of the vessel
lumen generated by most angiography techniques will be insufficient to deter-
mine the significance of lesions, such as whether they are stable or are likely
to rupture.

Magnetic resonance imaging is capable of distinguishing between the dif-
ferent components of atherosclerotic plaque, identifying its composition in ad-
dition to its morphology and potentially providing a more clinically relevant
assessment of the severity of disease. Direct imaging of the vessel wall depicts
components of atherosclerotic plaque. Calcium, lipids, thrombus, and fibrous
tissues each have distinct relaxation characteristics that can be measured by
MRI using a multicontrast approach for tissue characterization.

Imaging of the vessel wall for plaque characterization is considerably more
difficult than vessel lumen imaging. Signal generated by the vessel wall limits
the signal-to-noise ratio that can be achieved, while the needed high resolu-
tion further reduces the available SNR. Comprehensive tissue characterization
requires multiple image acquisitions to generate enough contrast weightings
to distinguish between the major plaque components. In addition, blood sig-
nal must be thoroughly suppressed to achieved adequate contrast. This may
be especially difficult in areas prone to slow or turbulent flow (such as the
carotid bifurcation) where this signal may mimic that of a legitimate plaque
lesion. Despite these obstacles, considerable progress has been made in finding
feasible imaging protocols for imaging vessel wall in the aorta, carotid, and
coronary arteries.

The most successful protocols to date in all three of these locations incor-
porate fast spin echo imaging coupled with cardiac gating (and respiratory
gating in the case of the coronary arteries) and double inversion recovery
(double IR) for blood suppression. The double IR preparation applies a non-
selective inversion to the entire volume, followed by a second selective inversion
to restore the magnetization in the imaged slice or slab. After waiting an ap-
propriate time interval for blood signal to be nulled, a standard FSE sequence
is applied to depict vessel wall and any associated plaque. This protocol may
be used with either 2D multislice acquisitions or true 3D volumes. By ac-
quiring T1-, T2-, and proton-density-weighted images, the major components
of atherosclerotic plaque (lipid, calcification, fibrous cap) can be segmented.
Two-dimensional acquisitions have been shown with resolution down to 0.4
× 0.4 mm in-plane with 2 mm slices, while true 3D acquisitions can reduce
slice thickness to 0.5 mm. The need for high-quality blood suppression in the
double IR sequence results in rather long acquisition times, and in the case of
coronary imaging, respiratory motion suppression is necessary as well.

Several ongoing developments in atherosclerotic plaque imaging with MRI
promise to further improve its capabilities. Imaging at higher field strengths
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(a) (b)

(c) (d)

Figure 7.15. Example of segmented T2-weighted MR cross-section. (a) Original
in vitro MR image of an excised artery, (b) observer-defined segmentation of lu-
men, intima-media, and adventitia–media borders, (c) fully automated segmenta-
tion, (d) identified region of plaque. MR image data courtesy of Drs. Stollberger
and Holzapfel, Karl-Franzens University of Graz and Graz University of Technol-
ogy, Austria.

(3T and beyond) will help improve SNR as such systems proliferate [91, 92].
Development of specialized receiver coils (including intravascular coils) may
also dramatically improve image quality and resolution potential [93]. Con-
trast agents that are selectively absorbed by plaque components are also show-
ing promise for plaque characterization [94, 95, 96, 93, 97, 98, 99, 100, 101,
102, 103].

7.5.2 Plaque Assessment via MR Wall Imaging

To determine plaque properties, MR images must have sufficient resolution
to allow segmentation of the vessel wall. The segmentation results in deter-
mination of the morphology of the vessel wall and plaque. After that, plaque
composition must be determined. This overall approach requires performing
a sequence of complex steps [104].

Quantification of plaque morphology in high-resolution volumetric multi-
contrast data (Plate IV) requires automated segmentation. To perform this
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task, a previously developed and successfully method for automated design
of border detection criteria [105] was employed that substantially simplifies
implementation of new border-based image segmentation applications. All in-
formation necessary to perform image segmentation is automatically derived
from a training set that is presented in the form of expert-traced segmentation
examples. Therefore, borders of lumen, internal elastic lamina (intima–media),
and external elastic lamina (media–adventitia) were manually traced in a set
of training images. From these examples, border detection criteria using edge-
and gray-level pattern information [105] were derived and used for segmenta-
tion of a testing set of images. Border detection errors were assessed in the
testing set.

Five atherosclerotic iliac arterial segments were imaged in vitro as de-
scribed above. The arterial wall layers and plaque were clearly visible as is
shown in Plate IV . The corresponding histology demonstrated good agree-
ment with the MR images. An example of an MR image Figure 7.15 (a)
with automatically identified lumen, intima–media, and media–adventitia bor-
ders is shown in Figure 7.15 (b) (c). After training as described above, the
borders automatically detected in a disjoint testing set were quantitatively
compared with a manually-identified independent standard. The automated
method yielded promising accuracy and minimal bias: root-mean-square and
signed mean border positioning errors of the media–adventitia border detec-
tion were 1.03±0.28 and 0.36±0.35 pixel, respectively. Corresponding border
positioning errors were 0.96±0.12 and 0.34±0.31 pixel for the intima–media
borders and 1.04±0.27 and 0.08±0.45 pixel for the lumen border detection.
Regions of plaque were identified as any portion of arterial wall with thicken-
ing between lumen–intima and media–adventitia borders (Fig. 7.15 d). This
thickness can be determined directly from the boundaries (surfaces) identified
in the volumetric MR images — an increased thickness indicates presence of
plaque.

The achieved quality of MR images and the segmentation results are en-
couraging and facilitate further development of plaque vulnerability indices
based on plaque mechanics [106]. Once noninvasive assessment of plaque vul-
nerability becomes available, the way in which atherosclerotic disease is di-
agnosed, monitored, and treated may change dramatically. Determination of
plaque composition and its mechanical stress consequences will allow assess-
ment of cardiovascular risks on a per-subject basis.

7.6 Conclusions

Computer vision methods are being employed in medical image analysis more
and more frequently. MR imaging provides enormous flexibility to probe living
bodies and deliver image information about the morphology, structure, and
function of individual organs and their parts. Magnetic resonance imaging
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and analysis of MRT images are indeed extremely powerful examples of how
image processing techniques can be applied beyond the visible spectrum.

The chapter focused on describing basic principles of MR imaging and
described several application areas in which automated image analysis will
play a major role in the near future — segmentation and analysis of car-
diac MR images, vascular MR angiography, and MR images of atherosclerotic
plaque. In all of the covered application areas, the imaging is performed three-
dimensionally and the analysis is three-dimensional as well. Needless to say,
the step from 2D to 3D is not an easy one and many new solutions must be
found to perform truly 3D medical image analysis. MR images is capable to
deliver four dimensional information as well (3D + time).

To summarize, the field of MR imaging and MR image analysis is an
extremely exciting one. The information about living bodies is provided in
real time, in 4D, with consequences almost beyond human imagination. The
amounts of data generated exceed the visual analysis capabilities of the diag-
nostic radiologists and call for development of reliable, accurate, precise, and
fast quantitative techniques for 3D and 4D MR image analysis. The authors
have no doubts that the general and broad field of computer vision has much
to contribute to automate the medical image analysis in general, and MR
image analysis in particular.
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Summary. Although ultrasonography is an important cost-effective imaging modal-
ity, technical improvements are needed before its full potential is realized for accurate
and quantitative monitoring of disease progression or regression. 2D viewing of 3D
anatomy, using conventional ultrasonography limits our ability to quantify and vi-
sualize pathology and is partly responsible for the reported variability in diagnosis
and monitoring of disease progression. Efforts of investigators have focused on over-
coming these deficiencies by developing 3D ultrasound imaging techniques using
existing conventional ultrasound systems, reconstructing the information into 3D
images, and then allowing interactive viewing of the 3D images on inexpensive desk-
top computers. In addition, the availability of 3D ultrasound images has allowed the
development of automated and semi-automated segmentation techniques to quantify
organ and pathology volume for monitoring of disease. In this chapter, we introduce
the basic principles of 3D ultrasound imaging as well as its visualization techniques.
Then, we describe the use of 3D ultrasound in interventional procedures and discuss
applications of 3D segmentation techniques of the prostates, needles, and seeds used
in prostate brachytherapy.

8.1 Introduction

Ultrasonography is an inexpensive and safe imaging modality that is widely
used for different applications such as material defect detection, and diagno-
sis and staging of human disease. Conventionally, ultrasound images are two-
dimensional (2D) making comprehension of complex three-dimensional (3D)
structures and related applications including volume measuring, 3D anatomy
display and animation difficult. In order to overcome this problem, 3D ultra-
sound imaging techniques have been developed in the past decade, which can
reconstruct 3D ultrasound images of organs and tissues from acquisition of
multiple conventional 2D images.

In Sections 8.2 and 8.3 we address the problems of acquisition and visual-
ization of 3D ultrasound images. In Section 8.4, we introduce the application of
3D US techniques in interventional procedures, such as image-guided surgery
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and therapy. Finally, we discuss the use of 3D ultrasound for segmentation
techniques used to segment the prostate (Section 8.5), needles (Section 8.6)
and brachytherapy seeds (Section 8.7).

8.2 Basic Principles of 3D Ultrasound

Three-dimensional visualization of the interior of the human body has been
a goal of diagnostic radiology since the discovery of x-rays. In the 1970s and
1980s, computed tomography (CT), ultrasound (US), positron emission to-
mography (PET), and Magnetic Resonance Imaging (MRI) have revolution-
ized diagnostic radiology by providing true 3D information about the interior
of the human body. However, 3D visualization techniques were slower to de-
velop, primarily because of the demanding computational requirements for
3D reconstruction and manipulation of the large amount of data in the 3D
images. Thus, early systems presented the acquired 3D information as 2D im-
ages, requiring the physician to view multiple cross-sections of the anatomy
and assemble the 3D information in his or her mind.

Medical ultrasound (US) imaging is a versatile and inexpensive imaging
modality available in most hospitals in the world. Current US imaging pro-
duces images of high quality, making it an indispensable tool in the man-
agement of many diseases, as well as for providing image guidance for inter-
ventional procedures. Nevertheless, conventional US imaging still suffers from
disadvantages, related to its 2D nature, which 3D imaging attempts to ad-
dress. Despite decades of exploration, it is only in the past five years that 3D
US imaging has advanced sufficiently to move out of the research laboratory
and become a commercial product for routine clinical use.

8.2.1 Limitations of 2D US Imaging

The development of 3D US addresses the disadvantages of 2D US imaging that
are related to the flexibility and subjectivity of the conventional 2D US exam.
Specifically, 3D ultrasound developments address the following limitations:

• Because conventional ultrasound images are 2D, the operators must men-
tally transform multiple 2D images to develop a 3D impression of the
anatomy and pathology during the diagnostic examination or during an
image-guided interventional procedure. This imaging approach is time-
consuming, inefficient, requiring an experienced operator, and can poten-
tially lead to incorrect diagnostic or therapeutic decisions.

• Staging and planning of interventional procedures often requires accurate
estimation of organ or tumor volumes. Current 2D US volume measure-
ment techniques assume an idealized shape, and use only simple measures
of the width and length in a few views. This practice leads to inaccuracy
and operator variability in volume estimation.
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• During interventional procedures and in monitoring the results of therapy,
it is important to obtain the same views repeatedly. However, it is difficult
to localize the thin 2D US image plane to a particular feature in the organ,
and more difficult to reproduce the same image location and orientation
later, making conventional 2D US imaging nonoptimal for the quantita-
tive monitoring of interventional techniques or for follow-up studies for
monitoring the effects of therapy.

• The patient’s anatomy or position sometimes restricts the image angle at-
tainable with the US transducer, resulting in inaccessibility of the optimal
image plane necessary for diagnosis or image-guided therapy.

8.2.2 Requirements for 3D US Imaging

The most common 3D US approach makes use of conventional ultrasound
machines and transducers with 1D arrays. These transducers are manipulated
in various ways to produce multiple 2D images, which are then reconstructed
into 3D images. Because the 3D images are produced from a series of 2D
images, their relative positions and orientations must be accurately known,
so that the reconstructed 3D image is not distorted.

Three approaches have been used to produce 3D US images with conven-
tional 2D US systems: tracked freehand, untracked freehand, and mechanical
assemblies. A fourth approach has been developed in which 2D arrays are
used to produce 3D US images directly. In the following sections, we briefly
describe these approaches and describe segmentation techniques for 3D US
based planning and guidance of interventional procedures. For detailed de-
scriptions of 3D ultrasound imaging approaches, the reader can refer to recent
review articles and a book [1, 2, 3].

8.2.3 3D US Scanning Mechanisms

2D Arrays

To produce 3D images in real time, systems using 2D arrays keep the trans-
ducer stationary, and use electronic scanning to sweep the US beam over the
anatomy. The system developed at Duke University for real-time 3D echo car-
diography has shown the most promise, and has been used for clinical imaging
[4, 5]. The transducer is composed of a 2D array of elements, which are used
to transmit a broad beam of ultrasound diverging away from the array and
sweeping out a pyramidal volume. The returned echoes are then detected by
the 2D array and processed to display multiple planes from the volume in real
time. These planes can then be interactively manipulated to allow the user to
view the desired image region.
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Mechanical Assemblies

Instead of using 2D arrays to produce 3D images, conventional transducers
with 1D arrays can be used to scan the desired anatomical volume. As the
transducer is swept across the volume, the series of 2D images produced by
the conventional US system is recorded rapidly. If mechanical assemblies are
used to move the transducer in a precisely predefined manner, the relative
position and orientation of each 2D image can be accurately known, and the
acquired series of 2D images can therefore be reconstructed into a 3D image.

Numerous mechanical scanning assemblies have been developed, in which
the transducer is made to rotate or translate by a motor. The mechanical
assemblies vary in size from small, integrated probes that house the mechanical
mechanism, to larger external mounting mechanical assemblies.

Figure 8.1. Diagram showing two 3D US mechanical scanning approaches: (a)
linear motion, and (b) tilt motion. In both cases, the 2D images are acquired with
constant spatial or angular spacing.

The integrated mechanical 3D scanning systems are easy for the operator
to use, but are larger and heavier than conventional transducers. In addi-
tion, they require a special ultrasound machine, and cannot be used with any
other conventional ultrasound systems. The external mounting assemblies are
generally bulkier, but can be adapted to any conventional US machine. Dif-
ferent types of mechanical assemblies have been used to produce 3D images,
as shown schematically in Figure 8.1.

Linear Motion: The transducer is mounted in a mechanical assembly which
is translated linearly over the patient’s skin, as shown in Figure 8.1(a),
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so that the set of 2D images acquired parallel to one another at a known
spatial interval. Because the scanning geometry is known, the 3D recon-
struction parameters can be precomputed, resulting in the 3D image being
available for viewing immediately after the scan is performed [6].
Because the resolution in the acquired 2D images is nonisotropic, the res-
olution in the reconstructed 3D image produced by linear scanning will
also be nonisotropic. Because conventional transducers have poor eleva-
tional resolution, the resolution in the scanning direction will be the worst.
However, the resolution will be unchanged in the planes corresponding to
the original 2D images.
This approach has been used successfully in many vascular applications,
including B-mode [6, 7, 8], color Doppler imaging of the carotid arteries
[7, 9, 10, 11, 12], tumor vascularity [13, 6], test phantoms [9, 14], and
power Doppler imaging [6, 7, 9].
To avoid distortions in the reconstructed 3D images, Cardinal et al. [15]
have shown that the distance between the acquired 2D images, and the tilt
angle of the 2D image planes with respect to the scanning direction must
be known accurately. To ensure that the error in volume measurements
is less than 5%, the distance between acquired images must be less than
0.05 mm for a spacing of 1 mm.

Tilt Motion: The transducer is mounted in a mechanical assembly and tilted
about an axis parallel to the face of the transducer, as shown in Fig-
ure 8.1(b). The tilting axis can be either at the face of the transducer,
producing a set of 2D images that intersect at the face, or above it, caus-
ing the set of 2D planes to intersect above the skin. This approach allows
the transducer face or the 3D probe housing to be placed at a single loca-
tion on the patient’s skin, making it useful for a wide range of abdominal
ultrasound imaging applications [16, 7, 17].
This scanning approach has also been used successfully with endocavity
transducers, such as transesophageal (TE) and transrectal (TRUS) trans-
ducers. In these applications, a side-firing linear array is used with either
an external fixture or an integrated 3D transducer. The transducer is ro-
tated about its long axis while 2D images are acquired. After a rotation
of about 100, the acquired 2D images are arranged in fanlike geometry
similar to that shown in Figure 8.1(b). This approach has been used suc-
cessfully to image the prostate for diagnostic applications (Figure 8.2)
[6, 7, 18, 19], and for 3D US-guided cryosurgery and brachytherapy [20, 6].
The main advantage of the tilt scanning approach is that the 3D scanning
mechanism can be made compact to allow easy hand-held manipulation.
In addition, using a suitable choice of scanning angle and angular interval,
the scanning time can be short. Because the set of planes is acquired with
a predefined angular interval, geometric 3D reconstruction parameters can
be precalculated, allowing immediate viewing of the 3D image.
Because the acquired 2D images are arranged in a fanlike geometry, the
distance between the planes will increase with distance from the trans-
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Figure 8.2. Two multiplanar rendering views of a 3D US image of a prostate with
a carcinoma obtained with a mechanical tilt scanning approach.

ducer (rotation axis). However, the change with distance in the sampling
interval can be approximately matched to the change with distance of the
elevational resolution, thereby minimizing the effect of spatial sampling
degradation. In combination, these two effects make the resolution worst
in the scan (tilt) direction, and degrade with distance from the transducer.
Tong et al. [21] have reported on an analysis of the linear, area, and volume
measurement errors for the mechanical tilting transducer approach. They
showed that if the location of the axis of rotation is known exactly, then the
percentage error in volume will equal the percentage error in the rotation
angle. To ensure a volume error of less than 5% for a typical scanning
angle of 100, the total accumulated error in the scan angle must be less
than 5. Thus, for a scan containing 100 2D images, the systematic error
in the angular interval between images must be less than 0.05.

Tracked Free-Hand Scanning

Although mechanical scanning approaches result in geometrically accurate 3D
images, the mechanical assemblies are generally bulky and at times inconve-
nient to use. To overcome this problem, free-hand scanning approaches have
been developed that allow the user to manipulate the transducer freely by
hand without significant constraints. While the anatomy is being scanned, the
positions and orientations of the acquired 2D images are tracked and recorded,
so that the 3D image can be reconstructed. Because the scanning geometry is
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not predefined, the operator must ensure that the set of acquired 2D images
has no significant gaps. Several free-hand scanning approaches have been de-
veloped, which use four basic position-sensing techniques: acoustic tracking,
articulated arms, magnetic field tracking, and image-based information.

Acoustic Tracking: In this approach, sound-emitting devices (spark gaps)
were mounted on the transducer, and an array of fixed microphones was
mounted above the patient. As the operator moved the transducer over
the patient’s skin in the usual manner, the 2D ultrasound images were
continuously acquired, and the acoustic pulses from the sound emitters
were continuously recorded by the microphones. Using the speed of sound
in air and the time-of-flight of the acoustic pulses from the emitters to the
microphones, the positions and orientations of the acquired 2D images
were then determined [22, 23].

Articulated Arms: A partially constrained free-hand scanning approach was
achieved by scanning the patient with the transducer mounted on a mul-
tijointed mechanical arm system. The relative rotation of the arms was
measured with potentiometers located at each joint, and the relative po-
sitions and orientations of the acquired 2D images were calculated. While
the transducer was manipulated over the patient’s anatomy, a computer
recorded the acquired 2D images and the relative orientation of all the
arms, which were then used to reconstruct the 3D image.

Magnetic Field Tracking: The most successful free-hand scanning approach
makes use of a six degree-of-freedom magnetic field sensor to track the
ultrasound transducer. In this approach, a transmitter is used to produce
a spatially varying magnetic field, and a small receiver containing three
orthogonal coils mounted on the transducer is used to sense the magnetic
field strength. By measuring the strength of three components of the lo-
cal magnetic field, the US transducer’s position and orientation can be
continuously monitored.
Although magnetic field sensors are small and unobtrusive, their accuracy
can be compromised by electromagnetic interference from sources such as
CRT monitors, AC power cabling, and some electrical signals from ultra-
sound transducers. Also, ferrous and highly conductive metals can distort
the magnetic field, causing geometric errors in the tracking information.
However, by ensuring that the immediate scanning environment is free of
electrical interference and metals, high quality 3D images can be obtained
[24, 25, 26, 27, 28, 29, 30].

Speckle Decorrelation: Free-hand scanning techniques described above re-
quire an external sensor to measure the relative positions and orientations
of the acquired 2D images. However, the relative positions of adjacent 2D
images can also be measured using the well-known phenomenon of speckle
decorrelation. When a source of coherent energy interacts with scatterers,
the reflected spatial energy pattern will appear as a speckle pattern. This
speckle is characteristic of US images and can be used in 3D US imaging.
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If two 2D US images are acquired from the same location and orientation,
then their speckle patterns will be the same. However, if one image is
acquired a short distance away from the other, then the degree of decor-
relation in the speckle will be proportional to the distance between the
two images [31]. Since the relationship between the degree of decorrela-
tion and distance will depend on several transducer parameters, accurate
determination of the separation of the images requires calibration of the
relationship between distance and various transducer parameters.

Figure 8.3. Two 3D power Doppler images obtained with free-hand scanning with-
out position sensing and displayed using volume rendering. On the left is a spleen
and on the right, a kidney.

Untracked Free-Hand Scanning

In this approach, the operator moves the transducer in a steady motion, while
a series of 2D images are acquired. Because the position and orientation of
the transducer are not recorded, the linear or angular spacing between the
acquired images is assumed in the reconstructing 3D image. Thus, geomet-
ric measurements such as distance or volume may still be inaccurate. If the
transducer’s motion is uniform and steady, then very good 3D images may be
reconstructed, as illustrated by Figure 8.3 [7].

8.3 3D US Image Reconstruction

Reconstruction of 3D US images refers to the process of placing the acquired
2D images into the 3D image in their correct relative positions. Two methods
have been used: feature-based and voxel-based reconstruction.
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8.3.1 Reconstruction of Features

In this approach, each acquired 2D image is segmented and classified into
the desired features that are to be reconstructed. Typical examples have been
implemented by manually or automatically outlining of the boundaries of the
ventricles in echocardiographic images or of the fetus in obstetrical images.
The boundary of each structure is then represented by a mesh and displayed.

The advantage of this reconstruction approach is that the 3D image is
reduced to a description of surfaces in the form of a mesh, enabling the use of
common hardware and software tools to manipulate and display these surfaces
in real time. The main disadvantage of this approach relates to the segmen-
tation and classification process, which identifies and stores information only
about the anatomical boundaries. Thus, important anatomical information is
lost, such as subtle pathological features related to tissue image texture.

8.3.2 Reconstruction of a Cartesian Volume

The most common 3D US reconstruction approach uses the set of acquired 2D
images to build a 3D grid of voxels. This is accomplished by placing the pixels
in the acquired 2D images into their correct locations within the 3D image.
The values (color or grayscale) of the voxels not sampled are calculated by
interpolation from their nearest neighbors. In this approach, all the original
information is preserved in the 3D image, and the original 2D images can be
recovered. However, if the angular or spatial spacing between the acquired
2D images is not chosen properly, the scanning process will not sample the
volume adequately, resulting in degradation of resolution in the reconstructed
3D image. Sampling the volume properly and avoiding gaps results in large
image files that can range from 16 MB to 96 MB [32, 6].

8.3.3 Viewing 3D US Images

Multiplanar Reformatting: Cube View

The most common approach for viewing 3D US images is based on multi-
planar reformatting (MPR) of the 3D image. In the cube view approach, the
3D image is presented as a polyhedron, and the appropriate 2D US images
are “painted” on each face by texture mapping (Figures 8.2 and 8.4). The
polyhedron can be rotated and any face may be moved, either parallel or
obliquely to its original location, while the appropriate US data is continuously
texture-mapped in real time onto the new face. Thus, the operator always has
3D image-based cues relating the plane being examined to the rest of the
anatomy [11, 19, 2].
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Figure 8.4. Two multi-planar rendered views of a 3D US image of the carotid
arteries with a plaque at the entrance to the internal carotid artery.

Figure 8.5. A 3D US image of a prostate displayed using the MPR technique as
intersecting orthogonal planes.

MPR: Orthogonal Planes

In this MPR approach, three perpendicular planes are displayed simultane-
ously, with graphical cues indicating their relative orientations (Figure 8.5).
For easier appreciation, these planes are typically made perpendicular to each
other. User interface tools are provided to allow the operator to select any
plane, and move it parallel or obliquely to the original, to provide the desired
view of the anatomy [33, 34, 2].
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Figure 8.6. 3D US image displayed using the VR technique showing a fetal hand.

Volume Rendering (VR)

The volume rendering technique presents a display of the entire 3D image after
projection onto a 2D plane. Image projection is typically accomplished via ray-
casting techniques [35]. Although many VR algorithms have been developed,
3D US imaging currently makes use of primarily two approaches: maximum
(minimum) intensity projection, and translucency rendering. This approach
has been primarily used to display fetal (Figure 8.6) and vascular anatomy
(Figure 8.3)[7].

8.4 3D US-Guided Prostate Brachytherapy

Prostate cancer is the most commonly diagnosed malignancy in men over 50,
and was found at autopsy in 30% of men at age 50, 40% at age 60, and almost
90% at age 90 [36]. However, when it is correctly diagnosed at an early stage,
prostate cancer is curable, and even at later stages, surgical treatment can
still be effective.

One of the most promising options for treatment of early prostate cancer
is prostate brachytherapy, which is used to implant 80–100 radioactive seeds
(e.g., 125I or 103Pd) in or near the prostate and avoid radiation-sensitive
normal-tissue structures [37]. Because the radiation dose produced by each
seed falls off rapidly with distance, the correct positioning of the seeds is cru-
cial to the success of the procedure. For each patient, an implantation dose
preplan is generated based on a CT or 3D US image of the prostate. During
a later outpatient procedure, the patient is positioned in approximately the
same position as for the preimplantation image, and brachytherapy seeds are
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then implanted in the prescribed positions using a needle. Real-time transrec-
tal US (TRUS) is used to ensure accurate placement of the seeds.

Because of possible changes in prostate size and shape between the preim-
plantation and implantation procedures, as well as possible changes in the
patient position between the preimplantation and implantation images, er-
rors in seed placement can occur. Performing preimplant dose planning and
seed implantation during the same session could avoid these problems. This
could be done by using a 3D US imaging system with rapid scanning and im-
mediate viewing of the 3D prostate anatomy. In addition, this system could
be used to provide improved image guidance during the procedure. Thus, an
efficient brachytherapy procedure could be achieved by integrating 3D US
imaging with the accurately determined positions of the prostate, needles and
seeds.

In the following discussion, we review prostate, needle, and seed segmen-
tation techniques developed by the investigators and present the most novel
technique in details.

8.5 Prostate Segmentation in 3D US Images

In prostate brachytherapy, assigning the appropriate therapy dose requires
accurate knowledge of the prostate shape and its volume. Traditionally, this is
done via manual planimetry, which not only is time-consuming and tedious to
perform, but also highly operator dependent, causing variability in the results.
In order to determine the shape of the prostate and measure its volume more
accurately and consistently, an automated or semi-automated technique is
required.

8.5.1 Previous Work

Most currently available prostate segmentation algorithms focus on segmenta-
tion of 2D US images. [38] proposed the Laplacian-of-Gaussian edge operator
followed by an edge-selection algorithm, which requires the user to select sev-
eral initial points to form a closed curve. Their method correctly identified
most of the boundary in a 2D US prostate image. This technique was ex-
tended using four texture energy measures associated with each pixel in the
image [39]. An automated clustering procedure was used to label each pixel
in the image with the label of its most probable class. Although good results
were reported for 2D US prostate images, the algorithm was computationally
intensive, requiring about 16 minutes to segment the prostate boundary in 2D
with a 90-MHz SUN SPARCstation.

Aarink et al. [40, 41, 42, 43] published a series of papers on prostate seg-
mentation. First, they used cross-sections of the prostate obtained with a
well-defined distance. In each image, the contour of the prostate was deter-
mined using edge detection techniques. After locating the prostate, the area
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of the prostate was calculated for each image and the volume of the prostate
was determined by multiplying the summation of these areas by the distance
between the cross-sections. In 1994, they proposed a practical clinical method
to determine the 2D prostate contour, which comprised three steps: edge de-
tection, edge enhancement and selection, and edge linking by interpolation.
Although they reported good segmentation results in 1996, their method could
not ensure robust and ac-curate segmentation due to the speckled noise and
image shadows.

In 1997, Liu et al. [44] presented an algorithm based on their radial bas-
relief (RBR) edge detector. First the RBR detector highlighted the edges in the
image, and then binary processing and area labeling were used to segment the
boundary. Their results showed that RBR performed well with a good-quality
image, and marginally for poor-quality images. The RBR approach was able
to extract a skeletonized image from an US image automatically. However,
many spurious branches were created introducing ambiguity in defining the
actual prostate boundary. In 1998, Kwoh et al. (1998) [45] extended the RBR
technique by fitting a Fourier boundary representation to the detected edges,
resulting in a smooth boundary, but this technique required careful tuning of
algorithm parameters.

Pathak et al. [46, 47, 48] also developed an edge guidance delineation
method for deformable contour fitting in a 2D ultrasound image and statisti-
cally demonstrated a reduction in the variability in prostate segmentation.

In 1999, Knoll et al. [49] proposed a technique for elastic deformation
of closed planar curves restricted to particular object shapes using localized
multiscale contour parameterization based on the wavelet transform. The al-
gorithm extracted only important edges at multiple resolutions and ignored
other information caused by noise or insignificant structures. This step was
followed by a template-matching procedure to obtain an initial guess of the
contour. This wavelet-based method constrained the shape of the contour to
predefined models during deformation. They reported that this method pro-
vided a stable and accurate fully automatic segmentation of 2D objects in
ultrasound and CT images.

In 2001, Garfinkel et al. [50] used a deformable model to segment the
prostate from 3D US images. Their approach required the user to initialize
the model by outlining the prostate in 40–70% of the 2D slices of each prostate,
using six to eight vertices for each 2D contour, and then an initial 3D surface
was generated. The running time of the algorithm was about 30 sec on a
SUN Ultra 20. They compared algorithm and manual segmentation results by
computing the ratio of the common pixels that were marked as prostate by
both methods. The results showed an accuracy of nearly 89% and a three- to
six-fold reduction in time compared to a totally manual outlining. No editing
of the boundary was possible to improve the results.

Although a variety of segmentation methods have been proposed, none
segments the prostate in the 3D US image directly and allows editing of the
results. Without the use of a complete 3D prostate image, prostate shape in-
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formation is not used efficiently, leading to an inaccurate and time-consuming
segmentation. To overcome this shortcoming, an alternative direct 3D seg-
mentation method is more promising.

In this section, we describe a semi-automatic 3D prostate segmentation
approach, which uses an ellipsoid 3D mesh model of the prostate to initialize
the procedure, and used the discrete dynamic contour (DDC) approach to
refine the contour in 3D. Experiments demonstrated that the average differ-
ence between our algorithm and manually segmented 3D prostate boundaries
varied from 0.08 mm to 0.5 mm while, the volume difference varied from 6%
to 10%. The computational time for the whole 3D prostate is about 60 sec on
a Pentium III 400-MHz PC computer.

8.5.2 3D Prostate Segmentation Based on the Deformable
Ellipsoid Model

The deformable model, also called the snake or active contour, was first pro-
posed by Kass et al. in 1987 [51, 52], and has become a widely used technique
in medical image analysis [53, 54, 55, 56, 57, 58, 59, 60].

Miller et al. [61] extended this technique and developed a geometrically
deformable model, which was further extended by Lobregt and Viergever to
the discrete dynamic contour [62]. They used force analysis at contour vertices
to replace the energy minimization of the whole contour so that a boundary
was found by driving an initial contour to the true object boundary. Because
the internal and external forces are evaluated only at the vertices, instead
of the trajectory of the connected edge segments, the DDC method is much
faster than the traditional deformable model approach.

In our previous paper [63], we reported on the development of an algorithm
to fit the prostate boundary in a 2D image using the DDC with model-based
initialization. A cubic interpolation function was used to estimate the initial
2D contour from four user-selected points, which was then deformed automat-
ically to fit the prostate boundary. However, diagnosis and therapy planning
of prostate cancer typically require the prostate volume and its 3D shape.
Constructing a 3D prostate boundary from a sequence of 2D contours can be
time-consuming or subject to errors.

Based on the 3D triangle mesh deformable model [64], we developed a
deformable ellipsoid model for 3D prostate segmentation. It comprises three
steps: (1) 3D mesh initialization of the prostate using an ellipsoid model; (2)
automatic deformation to refine the prostate boundary; and (3) interactive
editing of the deformed mesh, after which step 2 is repeated.

Initialization

In order to initialize the prostate mesh, the user manually selects six control
points (xn, yn, zn), n = 1, 2, ..., 6, on the “extremities” of the prostate in the
3D US image. Typically, the user selects an approximate central transverse
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(a) (b) (c)

Figure 8.7. 3D prostate segmentation using the deformable ellipsoid model: (a) 3D
US image with five of the six user-selected control points shown in white, (b) initial
mesh, (c) final deformed mesh.

prostate cross-section and then places two points near the prostate’s lateral
extremes and two near its top and bottom on the central axis. The last two
points are placed near the prostate’s apex and base. A 3D US prostate image
with five of the six initialization points is shown in Figure 8.7(a). These control
points are used to estimate an initialization ellipsoid, which is parameterized
as follows [65]:

r(η, ω) =

⎡⎣x
y
z

⎤⎦ =

⎡⎣x0 + a cos(η)cos(ω)
y0 + b cos(η)sin(ω)

z0 + c sin(η)

⎤⎦ , −π

2
≤ η ≤ π

2
,−π ≤ ω ≤ π, (8.1)

where (x0, y0, z0) is the center of the ellipsoid and a, b, and c are the lengths
of the semi-major axes in the x, y, and z directions, respectively. The length,
width, and height of the prostate are assumed to be approximately oriented
along the x−, y−, and z−axes of the 3D US image, as shown in Figure 8.7(a).
First, from the pair of control points with extreme x values, we estimate
x0 as half the sum the x coordinates and a as half the absolute difference.
Similarly, we estimate y0 and b from the pair with extreme y values, and z0
and c from the pair with extreme z values. The vector r(η, ω) then describes
the surface coordinates of the ellipsoid as a function of the azimuthal angle
ω and elevational angle η , defined in the usual manner with respect to the
x-axis and the x-y plane. Thus, by stepping the angles ω and η through an
appropriate grid of angular values, a set of regularly spaced points is obtained
on the surface of the ellipsoid. The ellipsoid’s surface is then represented by
a mesh of triangles connecting these points [66].

Usually, the ellipsoid generated as described above does not pass through
the six control points, nor does it fit the prostate boundary very well. To obtain
a better fit, the ellipsoid is warped using the thin-plate spline transformation
[67]. Using this transformation, the six ends of the ellipsoid’s major axes are
mapped onto the corresponding control points. The resulting mesh, as shown
in Figure 8.7(b), then becomes the initial mesh for the deformation step.
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Contour Deformation

The process for finding the 3D prostate boundary is almost identical to the 2D
segmentation technique described by [63], but extended to 3D by calculating
the internal force f int

i acting on each vertex i from Equation (8.2)

f int
i =

((
1
6

∑
i

êij

)
· r̂j

)
· r̂j (8.2)

eij = pi − pj (8.3)

where eij is the edge vector pointing towards vertex i from one of its six
neighboring vertices j, and r̂ denotes the unit radial vector at vertex i. These
equations are iterated until either all the vertices have reached equilibrium,
or the number of iterations has reached a preset limit. In our experiment, we
found that sufficient accuracy was generally achieved within 40 iterations (see
Figure 8.7(c)).

Contour Editing

The initialization procedure may place some mesh vertices far from the ac-
tual prostate boundary. The deformation process may not drive these vertices
towards the actual boundary because the image force exerts a strong effect
only near the edge of the prostate, where the image intensity changes rapidly.
In these cases, the user can edit the mesh by dragging a vertex to its de-
sired location. To avoid rapid transition in the boundary, adjoining vertices
within a user-defined radius are also automatically deformed using the thin
plate spline transformation. After editing, the automatic deformation process
resumes, with the iteration count reset to zero.

8.6 Needle Segmentation in 3D US Images

8.6.1 Introduction

As discussed in Section 8.4, brachytherapy radioactive seeds are delivered by
an implantation needle as it is withdrawn. Although the needle insertion can
be guided with a real-time 2D US imaging system, it is our experience from
prostate cryosurgery [20] that the 3D trajectory of the needle cannot be fully
ascertained, because lateral deflection is poorly detected. However, in order
to use 3D US guidance to overcome this problem, it is necessary to be able to
segment the needle in the 3D US image, in near real time. This task is made
difficult by artifacts in the US image caused by speckle, shadowing, refraction,
and reverberation, and by the low contrast of the needle when it is not parallel
to the US transducer. Because of these difficulties, traditional local operators
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such as edge detectors are inadequate for finding the needle boundary. The
challenge is to find a needle segmentation approach that is insensitive to these
image artifacts, yet is fast, accurate, and robust.

In this section, we describe just such an approach, which also requires
minimal manual initialization. This approach is motivated by four observa-
tions: (1) the needle image lies along a straight line; (2) the needle is more
conspicuous in a projection image than in the original 3D US image; (3) after
segmenting the needle in a 2D projection image, we know that the needle lies
in the plane defined by two vectors: the projection direction and the needle
direction in the projection image; (4) therefore, if we use two orthogonal pro-
jections, we know that the needle must lie along the intersection of the two
corresponding planes.

Our approach is composed of four steps: (1) volume cropping, using a priori
information to restrict the volume of interest; (2) volume rendering, to form
the 2D projection images; (3) 2D needle segmentation, in a projection image;
and, (4) 3D needle segmentation, or calculation of the 3D needle endpoint
coordinates.

Experiments with US images of both agar and turkey breast test phan-
tom (see Figure 8.8) demonstrated that our 3D needle segmentation method
could be performed in near real time (about 10 frames-per-second with a 500
MHz personal computer equipped with a commercial volume-rendering card
to calculate the 2D projection images). The root-mean-square accuracy in de-
termining needle lengths and endpoint positions was better than 0.8 mm, and
about 0.5 mm on average, for needle insertion lengths ranging from 4.0 mm
to 36.7 mm.

8.6.2 Volume cropping

The 3D US image is usually large with displays complex echogenicity (see Fig-
ures 8.8 and 8.9 (a). These attributes result in increased computational time
required to perform the image segmentation. In addition, they also increase
the likelihood that some background structures have a similar range of voxel
intensities as the needle voxels, increasing the difficulty of segmenting the nee-
dle. Even in a 2D projection (volume-rendered) image, in which a background
structure overlaps that of the needle, automatic segmentation of the needle
is much more difficult. However, if background structures are well separated
from the needle in the 3D US image, volume cropping can effectively alleviate
this problem. Furthermore, cropping will also reduce the size of the volume
to be rendered, significantly reducing computation time.

Based on a priori information about the needle location and orientation,
volume cropping restricts the volume of interest to the 3D region that must
contain the needle. This information is composed of the approximate insertion
point, insertion distance, insertion direction, and their uncertainties. This in-
formation can be made available when the needle is inserted manually or by
a motorized device under computer control, or whenever it is localized using
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Figure 8.8. Views of 3D US images of the two types of phantoms used to experi-
mentally evaluate our automatic needle segmentation algorithm. The 3D images are
displayed using the multi-planar technique: (a) agar, (b) turkey breast.

an acoustic, articulated arm, electromagnetic, or optical tracking device [36].
Our approach proceeds as follows.

Let L
′
1 = (x

′
1, y

′
1, z

′
1) and L

′
2 = (x

′
2, y

′
2, z

′
2) be the 3D image coordinates of

the needle’s insertion point and end point, respectively, and let L
′
0 = |L′

2−L
′
1|

be its inserted length. Then the 3D needle vector from insertion point to tip
can be written as L

′
0 = L

′
2−L

′
1 = L

′
0P

′
, where the unit vector P

′
is the needle

direction. We then assume that the uncertainty in the needle insertion point
can be estimated and that x

′
1 = x1±∆x, y

′
1 = y1±∆y , z

′
1 = z1±∆z, L

′
0 ≤ L0,

and that the angle between P
′

and a given approximate needle direction
P = (a, b, c) is at most φ < π/2. Then every needle voxel (x, y, z) must lie
within the cropped volume defined by the 3D range:

[xmin, xmax] × [ymin, ymax] × [zmin, zmax] (8.4)

where
xmin = min(x1 − ∆x, x1 − ∆x + (a − 2 sin(φ/2)) · L0), (8.5)

xmax = max(x1 + ∆x, x1 + ∆x + (a + 2 sin(φ/2)) · L0), (8.6)

ymin = min(y1 − ∆y, y1 − ∆y + (b − 2 sin(φ/2)) · L0), (8.7)

ymax = max(y1 + ∆y, y1 + ∆y + (b + 2 sin(φ/2)) · L0), (8.8)

zmin = min(z1 − ∆z, z1 − ∆z + (c − 2 sin(φ/2)) · L0), (8.9)

zmax = max(z1 + ∆z, z1 + ∆z + (c + 2 sin(φ/2)) · L0). (8.10)

An example of volume cropping is given in Figure 8.9(b).
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8.6.3 Volume rendering

Volume rendering is used extensively in exploring 3D images. In this process,
projection images are generated by casting parallel (or divergent) rays through
a 3D image volume, where they accumulate both luminance c(I) and opacity
λ(I) ≤ 1 as a function of the local voxel intensity I [68]. The grayscale intensity
of the projected 2D image plane is then the final accumulated luminance C
after the ray has passed through the volume. In general, the projected 2D
image of the needle will have the greatest contrast when both of the functions
c(I) and λ(I), called the transfer functions, match the distribution of I in
the needle voxels. Using phantom test objects, we found that this distribution
could be accurately modelled as a Gaussian distribution with mean Ī and
standard deviation σI , where the parameters Ī and σI depend on the image
appearance of the object. In our experiments, we defined the transfer functions
as

C(I) = λ(I) = exp
(

− 1
2

(
I − Ī

σI

)2)
. (8.11)

Using these Gaussian transfer functions, the 2D projection image is then spec-
ified by the projection direction, which in our case is always perpendicular to
the a priori approximate needle direction P.

8.6.4 2D Needle Segmentation

In the 2D projection image, we initially search for objects (connected groups
of pixels) with pixel intensities exceeding a fixed threshold of 25 (on an 8-
bit scale of 0 to 255). This threshold was chosen experimentally to include
virtually all needle pixels, while excluding most non-needle pixels. Because of
the volume cropping operation, we may safely assume that the object with
the largest extent in the P direction is the needle. (We note that, because
the projection direction is always chosen perpendicular to P, the vector P
always lies in the projected image plane.) Then, using a flood-fill algorithm,
the pixels in this object are assigned a value of 1, while all other pixels are
assigned a value of 0, resulting in a binary 2D projection image of the needle
as shown in Figure 8.9(d).

We assume that the projection image has 2D Cartesian coordinates (u, v),
chosen so that û = P . Then, the projected needle image lies within an angle
φ < π/2 of the u-axis, so we can perform a least-squares fit of the binary
projected needle image, to find the estimated projected needle vector L. With
knowledge of the needle direction, we determine its endpoints (u1, v1) and
(u2, v2), with u1 < u2, so that (u1, v1) corresponds the needle’s insertion
point and (u2, v2) corresponds to its end point.

8.6.5 3D Needle Segmentation

Given the a priori approximate needle direction P , we define two other unit
vectors Q and R such that {P,Q,R} are mutually orthogonal, and form the
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Figure 8.9. Comparison of volume cropped and rendered images of a turkey breast
phantom. (a) The MPR display of 3D US turkey phantom image; (b) Cropped
volume of (a); (c) Rendered image of (a); (d) rendered image of (b).

basis vectors of a right-handed 3D Cartesian coordinate system (Figure 8.10).
We then form two projection images in the orthogonal directions Q and R

′
=

−R.
For the 2D projection image projected in the direction Q, i.e., with û ×

v̂ = −Q , we choose û = P. Then v̂ = û × Q = R . From the 2D needle
segmentation, we then find that the endpoints of the estimated projected
needle vector L are

(pn, rn)Q = (un, vn), n = 1, 2. (8.12)

For the 2D projection image projected in the direction R
′

= −R, i.e., with
û × v̂ = −R

′
= R, we again choose û = P. Then v̂ = û × R

′
= −û × R = Q.

From the 2D needle segmentation, we then find that the endpoints of the
estimated projected needle vector L are:

(pn, qn)R′ = (un, vn), n = 1, 2 (8.13)



Chapter 8 Visualization and Segmentation in 3D Ultrasound 261

X

Y

Z

P
Q

R

L1
'

L2
'

Actual needle Approximate needle

Figure 8.10. 3D coordinate systems used in 3D needle segmentation.

We now suppose that a known point O = (x0, y0, z0) in the cropped volume
(e.g., its center) is projected onto the origin of the u-v plane in both projection
images, and define

pn = (pnQ + pnK)/2, n = 1, 2, (8.14)

qn = qnR′ , n = 1, 2, (8.15)

rn = rnQ, n = 1, 2. (8.16)

Then, the estimated 3D coordinates of the needle’s endpoints are given by:

L
′′
n = O + pnP + qnQ + rnR, n = 1, 2, (8.17)

and the estimated length of the needle is given by:

L
′′
0 = |L′′

2 − L
′′
1 |. (8.18)

Finally, the errors δn in Ln, n = 0, 1, 2, are given by

δ0 = |L′′
0 − L

′
0|, (8.19)

δn = |L′′
n − L

′
n|, n = 1, 2, (8.20)

where the actual needle endpoints L
′
1 and L

′
2 and needle length L

′
0 = |L′

2−L
′
1|

are determined by manually segmenting the needle in the 3D US image.

8.7 Brachytherapy Seed Segmentation in 3D US Images

After completing the brachytherapy seed implantation procedure, the seeds’
actual locations must be evaluated by CT or MRI imaging. Using this in-
formation, a dosimetric analysis (post-plan) is then performed to determine
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whether the dose coverage of the implant is satisfactory. If it is not, then ad-
ditional seeds can be implanted in the underdosed area. However, if the seed
placement could be evaluated with a 3D US imaging system (the same sys-
tem used to provide image guidance during the procedure), then a post-plan
could be performed immediately, and the additional seeds could then be im-
planted intraoperatively as an extension of the regular procedure, instead of
in a separate procedure after the post-plan CT or MRI examination is com-
pleted. Moreover, if 3D US image guidance with simultaneous seed placement
verification could be carried out, the treatment plan could be continuously ad-
justed during the procedure, as the seeds are implanted, thereby minimizing
the required number of needle insertions, and maximizing the effectiveness of
the radiation therapy.

However, performing seed segmentation in 3D US images is extremely diffi-
cult, for four reasons: First, calcifications and other small structures with high
echogenicity can mimic the bright appearance of a brachytherapy seed in an
US image, making positive seed identification difficult, unlike the situation in
a CT or MRI image (see Figure 8.11). Second, many seeds are implanted into
the prostate, typically 80-100, unlike the situation described in the preceding
section, where a single needle is being segmented. Third, because a seed is
cylindrically shaped (about 0.8 mm in diameter and 4 mm in length, similar
to a grain of rice), the brightness in the 3D US image can vary greatly, de-
pending on its orientation relative to the ultrasound transducer (being much
brighter when the seed is oriented parallel to the transducer, due to specu-
lar reflection).Fourth, the images of the seeds are superimposed on a highly
cluttered US image background.

8.7.1 Volume Cropping

By using the 3D prostate segmentation described in Section 8.5, we can crop
the 3D US image to a volume that contains only the prostate and its imme-
diate surroundings, where all the radioactive seeds are located. This not only
greatly eases the task of seed segmentation, but also saves a great deal of
computational time.

8.7.2 Adaptive Thresholding

The voxels in the cropped volume are segmented using an adaptive thresh-
olding technique. Suppose that the 3D US image has N gray levels, and let
{h(n), n = 0, · · · , N − 1} be the gray-level histogram of the cropped volume.
Then, because the images of the seeds are bright, the adaptive threshold T is
defined as

T = max

{
t

∣∣∣∣ 255∑
n=t

h(n) ≥ n0, t = 0, 1, · · · , 255

}
, (8.21)
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Figure 8.11. Seed segmentation results: (a) and (b) are the 3D US and the cor-
responding CT image, displayed using the MPR technique. The size of the 3D US
image is 383,383,246 voxels; (c) is a lateral slice, and (e) is a sagittal slice of the 3D
US image; (d) and (f) are the seed segmentation results of (c) and (e), with black
background and white seeds.

where n0 is the number of seed candidates. In implementing this technique,
the value of n0 must be chosen carefully. It must be large enough to ensure
that the seed candidates include as many of the seeds as possible (for a high
detection rate), but small enough to exclude as many false candidates as
possible (for a low false positive rate). A suitable value for n0 is 1% of the
number of voxels in the cropped volume. The cropped volume is converted
to a binary image, with the voxels whose gray levels equal or exceed T being
assigned a value of 1, and the remaining voxels a value of 0.
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8.7.3 Seed Candidate Extraction

In the binary image obtained by adaptive thresholding, each connected group
of voxels is generally considered to be a seed candidate. Morphological oper-
ations are used to separate or join these groups and may be employed when
deemed appropriate.

8.7.4 Seed Identification

Each seed candidate is labeled and analyzed to determine its size s in voxels,
its mean gray-level Ī, the direction of its principal axis, and the angle θ be-
tween the principal axis and the planned seed line. Then, the candidates are
classified according to three criteria. Candidates which meet all these criteria
are identified as seeds and the rest are classified as nonseed bright objects,
such as calcifications or other small echogenic structures. The criteria are:

1. smin ≤ s ≤ smax,
2. Ī ≥ Imin,
3. θ ≤ θmax,

where smin is determined empirically and smax is calculated from the physical
dimensions of the seed and the voxel dimensions of the 3D US image; Imin is
found from a set of manually segmented seed images; and θmax depends on
the statistical distribution of θ in a typical line cluster of seed candidates. In
our case, we used θmax = 12 .

Some of our seed segmentation results are shown in Figure 8.11. Figures
8.11(a) and (b) are views of the 3D US image and the corresponding CT
image, both displayed using the multiplanar reformatting technique. These
images demonstrate the 3D US image contains much lower seed contrast and
much higher background complexity, compared to the CT image. In its current
form, the seed segmentation algorithm has a seed detection rate of about 80%,
and a false positive rate of about 11 %.

8.8 Conclusion

Three-dimensional ultrasound imaging is becoming a mature technology that
has been used in many different diagnostic and therapeutic/surgical appli-
cations. In this chapter we described the principles of 3D US imaging and
its applications in image-guided prostate brachytherapy. Our focus has been
on the discussion of 3D segmentation of the prostate, needle and seeds to
be used in 3D US-guided prostate brachytherapy. Additional developments
are still required to exploit the full potential of 3D US imaging capabilities.
For example, the development of a real-time 3D US imaging system would
increase the efficiency and accuracy of needle biopsies. Also, improving 3D vi-
sualization techniques, so that they are more intuitive, would allow physicians
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to become more comfortable with advanced computational tools, resulting in
the wider availability of this technology. Finally, faster, more accurate, and
less variable segmentation and classification techniques using 3D US images
would allow better estimation of organ and tumor volumes, resulting in im-
proved treatment planning and therapy monitoring of patients.
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Summary. Recent advances in laser and electro-optical technologies have made the
previously underutilized terahertz frequency band of the electromagnetic spectrum
accessible for practical imaging. Applications are emerging, notably in the biomedi-
cal domain. In this chapter the technique of terahertz-pulsed imaging is introduced
in some detail. The need for special computer vision methods, which arises from
the use of pulses of radiation and the acquisition of a time series at each pixel, is
described. The nature of the data is a challenge since we are interested not only
in the frequency composition of the pulses, but also how these differ for different
parts of the pulse. Conventional and short-time Fourier transforms and wavelets
were used in preliminary experiments on the analysis of terahertz-pulsed imaging
data. Measurements of refractive index and absorption coefficient were compared,
wavelet compression assessed, and image classification by multi dimensional cluster-
ing techniques demonstrated. It is shown that the time-frequency methods perform
as well as conventional analysis for determining material properties. Wavelet com-
pression gave results that were robust through compressions that used only 20% of
the wavelet coefficients. It is concluded that the time-frequency methods hold great
promise for optimizing the extraction of the spectroscopic information contained in
each terahertz pulse, for the analysis of more complex signals comprising multiple
pulses or from recently introduced acquisition techniques.

9.1 Introduction

The terahertz (110 GHz to 10 THz) band of the electromagnetic spectrum,
between microwaves and the infrared, has until recently been unexplored as
a significant imaging tool. Recent advances in laser and electro-optical tech-
nologies now make the band accessible for practical use, and applications,
notably in the medical domain, are emerging. Previously, terahertz radiation
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was generated either by using thermal sources that produced weak and in-
coherent radiation, as conventionally used in far infrared Fourier transform
spectroscopy, or by highly complex and bulky equipment such as free electron
lasers or optically pumped gas lasers [1, 2]. Similarly, incoherent detection
methods were used, which were able to record only the intensity of the ter-
ahertz electric field. The most sensitive detectors of this type were liquid
helium cooled bolometers, which give a relatively noisy signal and have low
sensitivity. The key advances that have made terahertz imaging a practical
proposition have been in the fields of ultrashort pulsed lasers, nonlinear optics
and crystal growth techniques [3]. These have resulted in sources of bright,
coherent, broadband terahertz pulses and enabled coherent room temperature
detection [4]. The advantage of coherent detection methods is that it is possi-
ble to record not only the intensity, but also a time-resolved amplitude of the
electric field: a time series. In turn this leads to the possibility of obtaining
a spectrum by Fourier transformation of the time domain signal, and opens
up a wealth of spectroscopic analytic techniques, including those that rely on
measuring changes in the phase of the measured signal.

In parallel with the development of pulsed techniques, work has been un-
dertaken in the development of continuous wave terahertz imaging [5, 6], which
allows precise tuning to a particular frequency. As monochromatic radiation
is used the data acquired are simpler than in the pulsed case, and we shall
not be considering these systems and the corresponding data further in this
chapter. Advances have also led to the design of compact free-electron laser
systems [7].

Terahertz-pulsed imaging is a development of terahertz time domain spec-
troscopy [8, 9, 10]. These workers have had success in measuring, in the
terahertz band, the dielectric and optical properties of a range of materi-
als including water, polar, and nonpolar liquids, gases, semiconductors and
dielectrics. Terahertz-pulsed imaging involves projecting broadband pulses at
a sample and either detecting them after transmission through the sample
(transmission-based imaging) or detecting their reflections (reflection-based
imaging). In the extension to imaging, the spectroscopic response of a sample
is mapped by recording the transmitted or reflected broadband terahertz pulse
at a series of contiguous pixel locations [11, 12]. The simplest images are gen-
erated by acquiring data at only one time point during the pulse, and plotting
the amplitude of the signal at that time. Potentially more useful images can
be generated by calculating parameters associated with the full time series at
each pixel, and displaying those values using color look up tables [13]. Selected
parametric terahertz-pulsed images of a wax-embedded melanoma section of
thickness 1 mm, which has been prepared with the standard techniques used
in histopathology, are shown in Plate V. The melanoma is outlined in the
photograph in Plate V(a). The terahertz-imaged section was 7 mm ∗ 7 mm
corresponding with the lower right quadrant of the photograph. The numeri-
cal values associated with the color scale are different for each of (b), (c), and
(d).
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The images shown in Plate V were acquired using the technique as it was
introduced in 1995. Since that time, workers have introduced alternative ac-
quisitions designed to improve one or more aspects of the measurement. Many
of these are based on adaptation of mature algorithms from other fields. Dark-
field imaging [14] was introduced to generate images where the image contrast
arises from the differential scattering or diffraction of radiation. An alternative
approach to diffraction imaging has been developed [15], with the emphasis on
solution of the inverse problem to predict the aperture shape responsible for
a measured diffraction field. Extraction of information about the location of
buried structures was first obtained in 1997 [16], using time-of-flight reflection
measurements analogous to B-mode ultrasound. In addition to generation of
slice images in a plane perpendicular to the object surface, knowledge of depth
of objects of interest allows spectroscopic measurement to be made only from
the relevant location or the reconstruction of a slice parallel to the surface. The
technique is most appropriate for objects where both negligible dispersion and
absorption can be assumed. This assumption is not applicable to biomedical
subjects, and led to the use of techniques from two related fields. Retaining a
reflection geometry, techniques from geophysics have been applied leading to
estimates of thickness and refractive index [17]. In contrast, by using a trans-
mission geometry, the filtered back projection methods that underpin medical
imaging techniques such as x-ray computed tomography have been applied
to parametric projection images and the reconstruction of strong interfaces
successfully demonstrated [18].

In spite of the increasing complexity of data acquisition, all the techniques
retain a feature in common that sets them apart from other imaging methods.
The data acquired consist of a time series rather than a single value, and
new image analysis techniques are needed to ensure that all the information
present is used. In our own area of interest, because the depth of penetration
in human tissue is of the order of millimeters [19] it is likely that the first
practical human in vivo imaging will involve data acquired in reflection, with
transmission techniques being reserved for imaging of samples in vitro. While
in the latter case it may be possible to simplify the geometry by sample
preparation, in the former, unknown and complex tissue arrangements are
expected.

There has been only limited work on applying computer vision techniques
to terahertz images. Some [13] have suggested using specific “display modes”
for certain applications, for example, ensuring that parameters are calculated
from the part of the spectrum corresponding with absorption lines of partic-
ular molecules, and the range of parameters available for display was illus-
trated by others [20]. The first application of multidimensional classification
techniques to terahertz data has also been described [21]. Mittleman et al. [22]
introduced the idea of using wavelet-based techniques, and this idea was taken
up by others [23, 24] for pulse denoising. We return to the topic of computer
vision in terahertz imaging in Section 9.1.3, and introduce our own work in
this field.
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9.1.1 Equipment for Terahertz Pulsed Imaging

A schematic layout of a transmission terahertz-pulsed imaging system is shown
in Figure. 9.1. The technique is based on the pump- and probe-technique of op-
tical spectroscopy. An ultrafast infrared laser beam, giving femtosecond pulses,
is split in two. One part is used as the pump beam to generate picosecond
terahertz pulses, whilst the other forms part of the coherent detection system
and is used as a probe beam to detect the amplitude of the terahertz electric
field after it has interacted with the sample or subject.

Figure 9.1. Schematic layout of a transmission terahertz-pulsed imaging system.

There are two commonly used techniques for generating the pulses of ter-
ahertz radiation using the pump beam. In one, a voltage-biased photoconduc-
tive antenna [25] is illuminated with pulses from the ultrafast infrared laser.
Alternatively, the technique of optical rectification or optical mixing, may be
used to yield pulses containing frequencies up to 70 THz, which cross the bor-
der between the terahertz band and the far infrared. The infrared pulses are
used to illuminate a crystal with high nonlinear susceptibility [4, 26]. The re-
sulting terahertz beam is directed onto the sample or subject using parabolic
mirrors. The transmitted terahertz pulse profile is measured at a discrete
number of time points by scanning using an optical delay stage. The spatial
scanning of the object for image formation may most simply be performed
using raster scanning of either the terahertz beam or of the sample itself, but
this is time consuming. Alternative, faster, schemes are under development.
A promising method involves the illumination by the pump beam of a larger
area representing many pixels; a multielement array detector such as a charge
coupled device is used for detection [12, 27, 28]. More complete descriptions
of terahertz imaging systems are available [29].
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Many of the systems in use for research are laboratory-based and occupy
an area of up to 3 m ∗ 2 m, but more compact and portable systems are under
development. An example is shown in Figure 9.2 which is a commercially
available reflection system for use in dermatology. The box shown is 100 cm
× 60 cm × 100 cm in size. The subject of interest is placed on a window on
the top of the instrument, or examined using the probe attachment.

Figure 9.2. The TPI Scan(TM): A complete terahertz imaging system including
near-infrared laser and terahertz imaging optics for imaging biological tissue. Cour-
tesy of TeraView Ltd, Cambridge, UK.

In Figure 9.3, a commercially available system is shown, which can be used
in both reflection and transmission modes [30, 17].

A further system is under development by the Zomega Technology Corpo-
ration.

9.1.2 Potential Applications

In addition to the possibility of characterizing materials by spectroscopy, the
penetration characteristics of terahertz radiation have also guided researchers
towards potential applications. For example, polar liquids absorb strongly in
the terahertz band; an example of such a liquid is water. Metals are opaque
to terahertz radiation, whilst non-metals such as plastics and paper products
are transparent, as are non-polar substances. Dielectrics have characteristic
absorption features peculiar to each material. The exploitation of these pen-
etration characteristics is discussed in more detail in the following sections.
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Figure 9.3. The Picometrix T-Ray(TM) 2000, the first commercial time domain
terahertz spectroscopy and imaging system. Courtesy of Picometrix, Inc., Ann Ar-
bor, MI.

Biomedical Imaging Applications

Our particular interest is in biomedical applications for terahertz imaging.
The perceived advantages of using the terahertz band for biomedical applica-
tions include its sensitivity to the presence of water which may be of use for
detecting or characterizing disease state, the lack of a hazard from ionization,
relatively less Rayleigh scattering than for infrared and visible radiation, and
the possibility of characteristic “signatures” from different tissues in health
and in disease [31, 32, 33]. These characteristic signals may result from water
content or other chemical features related to the composition or functional
properties of the tissues.

• Sensitivity to water : An excellent example of utilization of the sensitiv-
ity of terahertz frequency radiation to the presence of water molecules is
a study concerning the noninvasive continuous measurement of leaf water
content [22, 34]. The technique may find further applications in agriculture
and manufacturing [35], for assessing the moisturizing effects of cosmetics,
and characterizing the flow of water through engineered materials or tis-
sues. There is potential for distinguishing healthy and diseased tissue by
its water content, where it may also be possible to differentiate bound and
free water molecules [36]. We return to this last point later. The draw-
back of the high attenuation of terahertz frequency radiation by water is
the concomitant limited depth of penetration (up to a few millimeters).
However, even without special devices to deliver and detect the radiation
inside the body, there is still a number of promising applications that do
not require the radiation to travel far compared with the aforementioned
depth of penetration. There are hopes that terahertz frequency imaging
will be of value for in vivo characterization of dermatological conditions,
or the early diagnosis of tooth decay.
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• Safety issues: In common with many of the more recent introductions for
medical imaging (ultrasound, magnetic resonance imaging, infrared tech-
niques) terahertz frequency radiation is free from the ionization hazard
associated with x-rays and nuclear medicine techniques. There are pub-
lished guidelines regarding safe exposures, for example [37]. These were
based on measurements made using wavelengths under 10.6 µm and pulse
durations over 1.4 ns [38] and it is believed that under those conditions the
damage mechanism is thermal. However there is also the possibility of res-
onant absorption mechanisms and thermomechanical and thermochemical
effects for pulses of the type used in terahertz-pulsed imaging, and work
is underway to investigate this [39, 40]. We have estimated that skin ex-
posure for current pulsed systems using electronic and optical generation
methods, where the average power of each pulse is under a milliwatt, will
give exposures that are well within the limits set in the guidelines [41].
It is likely that the more powerful systems, such as those based on free
electron lasers, may carry with them a hazard associated with heating.

• Rayleigh scattering : As the amount of Rayleigh scattering decreases with
the fourth power of the wavelength, it is expected that terhertz frequency
radiation should be scattered less than visible and near-infrared frequen-
cies, which would be advantageous for imaging. This has been borne out
by experiment. In a direct comparison of imaging using terahertz and
near-infrared pulses, higher image contrast was obtained using the tera-
hertz pulse although the near-infrared pulse was of higher power [42]. The
difference could be explained by wavelength-dependent scattering.

• Characteristic tissue “signatures”: In Fourier transform infrared (FTIR)
spectroscopy the word “signature” describes the presence of a characteris-
tic absorption peak at a particular wavelength, which indicates the pres-
ence of a specific molecular bond. In some vitro applications for terahertz
pulsed imaging, particularly of pure samples, signatures of this kind may
be present. For the reasons outlined below we do not expect to see a single
characteristic spectral absorption feature associated with each tissue in
terahertz-pulsed imaging in vivo, or of tissue samples in vitro. Instead, we
hypothesize that spectra from different tissues will have different shapes (or
signatures), perhaps best described by a combination of absorption char-
acteristics. The reason we do not expect to see sharp absorption peaks in
spectra from tissues is because the samples will contain a complex mixture
of several molecules. For each molecule, there may be several chemical en-
vironments, which will lead to smoothing of the spectral features. Finally,
the presence of water, with its strong absorption, will potentially mask the
other molecular absorptions.

• Proposed biomedical applications: Many applications have been proposed,
ranging from studies at the genetic level, for example, investigating the
hybridization state of DNA [43] to in vivo measurements of the thickness
of skin [36]. Two Europe-wide projects are leading work in this field: first,
Terahertz Bridge (http://www.frascati.enea.it/THz-BRIDGE/) which is
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following a streamline of increasing complexity from biomolecules to cell
membranes, cell nuclei, and tissues, and, secondly, Teravision (http://
www.teravision.org) concentrating on imaging of intact tissue in vitro and
in vivo.
Imaging, and computer vision, is most likely to be used for in vivo ap-
plications where knowledge of the spatial distribution of the chemically
specific spectroscopic measurements is of value. A number of groups have
demonstrated image contrast between tissues, though using, in general,
very small numbers of samples. These demonstrations include data from
pork and chicken [32, 31, 44, 45, 14], human tooth enamel and dentine
[46], human skin in vivo [36], Spanish Serrano ham [24], histopathologi-
cally prepared human liver [47], and canine tumor [14]. A study of healthy
tissue that includes repeated measurements from dehydrated tooth sam-
ples from seven individuals and freshly excised tissue samples from two
donors has been reported [19]. The first study to include more samples in
both health and disease, and thus having a higher power for hypothesis
testing, is that of [48]. They imaged 15 samples of human healthy tissue
and basal cell carcinoma.
These early results have led to optimism that early dental caries and skin
cancers may be detectable using terahertz-pulsed imaging. Although there
are alternative modalities that can be applied to each application, none
has the necessary high sensitivity and specificity [49]. Other suggestions for
terahertz-pulsed imaging include in vivo imaging of breast tumors, based
on promising results obtained using microwaves [50] and in vitro results
from terahertz-pulsed imaging [23]. Wound healing is an area attracting
much interest, as terahertz imaging offers the potential of a noncontact
measurement technique that could be used through a dry dressing.

Nonbiomedical Imaging Applications

• Security and military applications: These applications take advantages of
the chemical specificity of the technique, and terahertz imaging has been
advocated for remote scanning for biological agents such as anthrax or
explosives [51]. Ranging studies to simulate radar of larger objects have
been performed using terahertz radiation and scale models [52], and non-
imaging versions of the technology are expected to have applications in
communications.

• Quality control : Most packaging materials are transparent to terahertz
radiation, so terahertz radiation has been proposed as a nonionizing sub-
stitute for quality control using x-rays in several industries including the
food and textile industries. The connections in packaged integrated circuits
may be assessed [22].

• Characterization of semiconductors, gas identification: Semiconductor
characterization has been a particularly fertile area because dielectrics have
a characteristic absorption dependent on the polarity and optical phonon
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resonances peculiar to that material. Gas identification at terahertz fre-
quencies [53] is also a good application because the emission and absorp-
tion lines of rotational and vibrational excitations of lighter molecules are
strong in that part of the spectrum. Spectral lines are generally sharper in
gaseous than in solid or liquid states, and this makes possible the precise
localization of gas emission or the characterization of combustion flames.

• Research applications: The nondestructive and noncontact nature of the
radiation has attracted the interest of those wishing to investigate valu-
able artifacts. There are potential uses for studying fossils in paleontology,
visualizing through the surface layers of art works and other antiquities,
and determining the content of books without the need to touch or disturb
delicate pages.

Reviews that describe potential applications, with an emphasis on the
biomedical, include those by Mittleman et al. [22] and Koch [54]. Siegel [55]
gives a complete historical overview, including the passive imaging methods
that are used for applications in astronomy and Anderton et al. [56] consider
military applications.

9.1.3 Terahertz-Pulsed Imaging and Computer Vision

Terahertz-pulsed imaging presents challenges to analysis because in the ac-
quired data set, each pixel contains a time series representing the measured
terahertz frequency pulse. We have investigated some novel data processing
approaches.

Time–Frequency Analysis

The aim in terahertz-pulsed imaging is to extract useful comparisons between
a well-understood reference pulse, and those detected after transmission or
reflection. Figure 9.4 shows three pulses — a reference pulse and two different
transmission responses, one from nylon and one from cortical bone. Figure 9.5
shows these pulses after Fourier transformation. Notice that the spectra are
very different, as are the pulses; they capture some of the information about
the pulses that is obvious. For example, the high-frequency (noise) activity in
the reference, and the reduced activity, or “power” in the transmitted pulses.
However, features which, to the human eye, are dominant, such as the pulse
delay, cannot be seen in this representation.

In order to describe the different overall shapes and characteristic absorp-
tion features that characterize the different materials, analysis of waveforms is
usually based on Fourier decomposition [57]. Most of the applications listed in
Section 9.1.2 have used analyses of this type. For example, Kindt and Schmut-
tenmaer [10] present a series of plots showing the refractive index and linear
absorption coefficient of polar liquids plotted against frequency. On its own,
however, Fourier transformation is somewhat crude since the measure is global
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(a)

(b) (c)

Figure 9.4. Three terahertz pulses. (a) A reference pulse. (b) The pulse after
transmission through 1mm of nylon. (c) The pulse after transmission though 1mm
of cortical bone.

to the signal. We seek mechanisms for deriving more local, time-specific, fea-
tures. This is of particular importance for data comprising a series of pulses,
at different times, representing interactions with different boundaries. The
work in this chapter uses transmission data, from a single layer of material.
Figure 9.4 illustrates that the reference pulse peak suffers a delay (along the
time axis) and a flattening, or spreading, that are characteristic of the partic-
ular part of the sample under inspection. Ordinary Fourier transforms do not
capture the time-dependent qualities of the information. There are also no-
ticeable effects in the remainder of the signal that can be perceived as changes
to the frequency make-up, which are dependent on the temporal instant. For
example, the broadening of the main pulse suggests that the higher frequen-
cies are no longer present, due to absorption, reflection or scattering, as they
are responsible for the sharpness of the peak. It is hard to say, however, if the
higher frequencies have been removed from the pulse uniformly over time.

An analytic technique was required that would perform the frequency
space decomposition that Fourier transforms provide, but in a time-dependent
manner. We have applied two approaches, the short-time Fourier transform
and wavelets. The theoretical bases for these approaches are described in Sec-
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(a)

(b) (c)

Figure 9.5. Frequency domain representation of three terahertz pulses. (a) A ref-
erence pulse. (b) The pulse after transmission through 1mm of nylon. (c) The pulse
after transmission though 1mm of cortical bone.

tions 9.2.1 and 9.2.2. Wavelets were first used for terahertz imaging by Mit-
tleman et al. [22], and have been used in other areas of biomedical signal pro-
cessing [58, 59]. The techniques can generically be described as time-frequency
techniques.

We have investigated the use of time-frequency techniques in two ways.
The first of these would, in a generalized framework for computer vision [60].
be described as a segmentation task. Previous time-frequency segmentation
work in biomedicine has been performed on breast RF data and on neuro-
physiological signals [61, 62]. For the terahertz data, both conventional and
time-frequency methods were used to determine the refractive index and ab-
sorption coefficient of samples of nylon and resin, and the results compared.
The second application is an example of a preprocessing or signal processing
step. Time-frequency techniques have been applied for noise reduction of the
acquired time series, following work on related modalities [63, 64, 65] and for
compression. Compression may be required because very large data sets can



282 Elizabeth Berry et al.

result from the need for spectroscopic detail at high spatial resolution. The
effect of compression was determined by calculating the refractive index and
absorption coefficient of nylon with and without compression. The refractive
index and absorption coefficient of a material are key factors for terahertz-
pulsed imaging. They determine the amplitude and timing of a transmitted,
reflected or propagated pulse. Most parameters used for parametric images
are strongly related to one or other property.

Clustering

In general, terahertz-pulsed imaging data are not amenable or accessible to
the customary image processing and computer vision approaches unless these
3D data are first reduced, by the production of parametric images, to the
two or three spatial dimensions used by such algorithms. However, workers in
FTIR spectroscopy have reported successes with the analysis of complex sam-
ples by applying classification techniques to the acquired spectra [66]. This
appears to be a promising approach for the terahertz frequency spectra we
expect from tissue. They used prior knowledge of cellular structure in normal
tissue and in the presence of carcinoma. The latter state is characterized by
absence of particular cells, e.g., absence of goblet and mucin from colorectal
adenocarcinomas, which has an effect on the shape of the spectrum. Classi-
fication success using training data, but without prior knowledge of biology,
has recently been reported for terahertz imaging data [21].

Clustering methods fall into the category of segmentation in computer
vision [60]. Here, image classification using clustering techniques (both for
the full time series and for parameters derived from it) was applied to sev-
eral terahertz images. These included a synthetic image with a known true
classification, an acquired image where a classification was available from an-
other imaging modality, and acquired images without knowledge of the true
classification.

High-Level Processes

Higher-level processes used in computer vision, such as shape representation
and shape extraction via motion, texture, etc., will be relevant for the analysis
of parametric images or for classified images. Such analysis is not presented
here. The ultimate aim of any computer vision analysis route is to extract
“understanding” of some description from the data being processed. The un-
derstanding in biomedical terahertz imaging will be highly specific. Examples
include the identification of regions of low mineralization representing early
tooth decay, and associating different regions of an image with states of health
and disease.

Thus, the purpose of this work was to apply data processing methods
designed to suit the nature of terahertz-pulsed imaging data:
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• To compare time-frequency techniques with conventional Fourier methods
for extracting optical properties of materials.

• To determine the maximum degree of wavelet compression that would lead
to no significant alteration in measured optical properties.

• To demonstrate clustering by multi-dimensional techniques.

In the following section we present a brief theoretical overview to support
the methods that are described in Section 9.3.

9.2 Theory

9.2.1 Short-Time Fourier Transform (STFT)

The Fourier series representation of a real valued periodic function f(t), with
period T (so f(t + T ) = f(t)) has Fourier series representation

f(t) =
∞∑

−∞
akeikωt, (9.1)

where ω = 2π/T is the fundamental frequency and the Fourier coefficients are
given by

ak =
1
T

∫ t0+T

t0

f(t)e−ikωtdt. (9.2)

This representation provides a decomposition of the function into frequency
harmonics, whose contribution is given by the coefficients ak. This decompo-
sition is of great use in the analysis of functions since it betrays many useful
properties; for example, very sharp changes contribute very high harmonic
information, while slow variation is associated with low harmonics. Similarly,
noise effects are often characterized by high frequency components.

More generally, for a nonperiodic function, the Fourier transform of f(t)
is given by

f̂(ω) =
∫ ∞

−∞
f(t)e−iωtdt. (9.3)

This transform may be inverted, where f̂ and f are a Fourier transform pair,
by

f(t) =
1
2π

∫ ∞

−∞
f̂(ω)eiωtdω. (9.4)

However, the Fourier transform, and Fourier methods generally, are global,
in the sense that they operate on the whole period of a function. In (9.2) we
need full knowledge of f(t) in order to extract the coefficients, and all values
of f(t) contribute to them. Any perturbation of f(t) at any point will affect
all the ak. This leaves it of limited value when the effects under scrutiny are
local, in the sense that there are time dependencies in the frequency content
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of the signal. This is very much the case in the study of terahertz data — for
example, in Figures 9.4(b) and 9.4(c), it is clear that the major peak of the
pulse has been delayed, but by different lengths of time. The lack of informa-
tion on time delays is evident in Figure 9.5. While it is possible to use the
Fourier transform to estimate time delays by determining the phase differ-
ence between two pulses, the estimates tend to be inaccurate. The transform
is a periodic function with 2π phase increments concealed by the periodicity,
and inaccuracies arise from the limitations of the phase unwrapping algorithm
used to estimate time delay. We seek, therefore, a combination of time and
frequency analyses to permit the extraction of local effects using the power of
the Fourier approach. This can be done by extracting windows of the original
function before performing the Fourier analysis — this is the approach of the
short-time Fourier transform. The simplest way to extract windows from a
function is to multiply it by another function, such as a rectangular window
of width 2τ , described by (9.5).

fb(t) = f(t)Φ(t − b)

=
{

f(t) tε[b − τ, b + τ ]
0 otherwise. (9.5)

The value of fb(t) can then be subjected to Fourier analysis in the normal
manner.

The short-time Fourier transform (STFT) of the function f(t) with respect
to the window function Φ(t) calculated at the frequency ξ and the time β is
then

GΦf(β, ξ) =
∫ ∞

−∞
f(t)Φ(t − β)e−iξtdt. (9.6)

Contrast this with (9.4); we have added a second variable β to locate the
transform in time. This is sometimes written, using the bar notation for the
complex conjugate, as

GΦf(β, ξ) =
∫ ∞

−∞
f(t)Φβ,ξ(t)dt, (9.7)

where
Φβ,ξ(t) = Φ(t − β)eiξt. (9.8)

It should be clear that the rectangular window function (9.5) is not best
chosen for our purpose; the hard limiting step edges will cause any subsequent
Fourier transform to include high-frequency components that are properties
of the step rather than of the function. For this reason it is more common
to use smooth window functions such as Gaussians. In particular, the Gabor
transform uses the window function

gα(t) =
1

2πα
et2/4α (9.9)



Chapter 9 Time-Frequency Analysis in Terahertz-Pulsed Imaging 285

for some α > 0.
In this work, we have used a simple Gaussian window (parameterized by

its standard deviation) in all applications of the STFT. Applications of the
STFT to two of the pulses of Figure 9.4 are in Figure 9.6. It can be seen that,
in addition to the reduction in power, the transform has successfully captured
the delay in the information in the transmitted pulse, at each frequency.
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Figure 9.6. The STFT applied to: (a) the pulse of Figure 9.4(a) and (b) the pulse
of Figure 9.4(b).

It is important to realize that it is impossible simultaneously to obtain
good time resolution and good frequency resolution. Imagine a box drawn on
a time-frequency graph, a narrow tall box has good time but poor frequency
resolution, while a short wide one has bad time but good frequency resolu-
tion. The uncertainty principle determines the minimum area of this box, and
thereby the usefulness of the technique. Conversely, the fact that the function
is windowed permits real-time application of the STFT (since only limited
information is needed), although this advantage is not relevant in this appli-
cation. Various other transforms, which we will not consider here , exist with
the aim of localizing the study of frequency, in particular the Wigner Ville
transform [67]. The theory of Fourier transforms and series in discrete and
continuous forms is described exhaustively elsewhere [68], and their applica-
tion to signal and image processing is similarly fully described in other texts
[60].

9.2.2 Wavelets

Wavelets overcome the shortcomings of the STFT by providing a basis for
function representation that varies in frequency and time (translation). Where
a number of STFT calculations would be required to include a range of window
sizes in both frequency and time, this is achieved in a single wavelet operation.
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This basis is derived from a mother function Ψ(t) which is dilated (scaled)
and translated to construct the family of basis functions. We write

Ψb,a(t) =
1√
a
Ψ

(
t − b

a

)
a (9.10)

so a has the effect of dilating, or scaling, Ψ , and b translates.
These effects are illustrated in Figure 9.7 for a very simple mother function,

the Haar. The scaling parameter a is clearly influencing the frequency of the
function – 1

a is a measure of frequency.
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Figure 9.7. The Haar mother function with (a) a = 1, b = 0; (b) a = 1, b = 1;
(c) a = 2, b = 0; (d) a = 2, b = 1.

Given this family of basis functions, we can now represent an arbitrary
function f(x) by correlating it with the scaled and translated versions of the
mother. The continuous wavelet transform of f(x) with respect to the mother
Ψ(t) is given by

WΨf(b, a) =
∫ ∞

−∞
f(t)Ψb,a(t)dt. (9.11)

A wavelet transform of the terahertz pulse of Figure 9.4(b) is shown in
Figure 9.8. Notice the degree of detail here; wavelet representations can be
difficult to interpret without practice and concentration, however, as for Fig-
ure 9.6, it is straightforward to observe the time delay of the high-frequency
component.
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Figure 9.8. The Morlet wavelet transform of the terahertz pulse in Figure 9.4(b).
The scale axis runs from front to back, and the time (or translation) axis from left
to right.

The wavelet transform is invertible, provided

Ψ̂(0) = 0 (9.12)

where Ψ̂ is the Fourier transform of Ψ – (9.4). To recapture f , a two-dimensional
integration over both parameters a and b is required;

f(t) =
1

CΨ

∫ ∞

−∞

∫ ∞

−∞

1
a2 [WΨf(b, a)]Ψb,a(t)dadb. (9.13)

Here CΨ is a constant dependent on the mother, given by

CΨ =
∫ ∞

−∞

|Ψ̂(ω)|2
ω

dω. (9.14)

We require this constant to be finite. This is known as the admissibility
condition that restricts the class of functions that may be chosen as wavelets.
Note in particular that of necessity Ψ̂(0) = 0.

The functions f we observe are of course discrete, and so require a dis-
cretized continuous wavelet transform in the same manner as a discrete Fourier
transform is defined. In fact, the continuous transform contains a lot of redun-
dancy; this, together with the computational load of a simple discretization,
has led to the development of very efficient subsamplings to provide the dis-
crete wavelet transform (DWT). This is normally done by taking the scale
parameter a to be of the form 2s for an integer s, and b = k2−s. Then, (9.11)
becomes

WΨf(k2−s, 2−s) = 2s/2
∫ ∞

−∞
f(t)Ψ(2st − k)(t)dt. (9.15)

If F is discretized, with a sampling rate chosen as 1 for convenience, this
becomes
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WΨf(k2−s, 2−s) = 2s/2
∑

n

f(n)Ψ(2sn − k). (9.16)

Note that in computing this, we only need to know the function values
where the corresponding wavelet value is nonzero.

9.2.3 Computer Vision Background

Wide-Band Cross-Ambiguity Function, WBCAF

Significant relevant theory on signal pulses was developed in the study of
radar, in which we are often interested in correlating a signal with time-shifted
copies of itself. The aim is to extract time delay and Doppler shift, thereby
making good estimates of signal delay, and implicitly distance of travel [67].
The relevant ambiguity function of a signal is given by

Af (ξ, x) =
∫ ∞

−∞
f
(
b +

x

2

)
f
(
b − x

2

)
e−iξbdb. (9.17)

The transforms in which we are interested perform a correlation of the
observed data with individual basis functions, not with itself. The wide-band
cross-ambiguity function, WBCAF [69], of a function f2(t) against a reference
f1(t) is defined as

WBCAFf1f2(τ, σ) =
1√
σ

∫ ∞

−∞
f2(t)f1

t − τ

σ
dt, (9.18)

where f1 has been delayed by τ and scaled by σ. This permits the extraction
of the appropriate τ (time delay) for each scale σ, by locating the value of τ
that provides the maximum value of correlation at that σ.

Note, however, the similarity between (9.11) and (9.18). The WBCAF
resembles the continuous wavelet transform, using the reference function as
the wavelet mother. This is an expensive computation, since the reference f1
needs repeated resampling (interpolation, filtering, subsampling), which can
generate a prohibitive overhead. To overcome this, Young [70] has developed
the wavelet-based wide-band cross-ambiguity function

WB − WBCAFf1f2(τ, σ) =
∫ ∞

−∞

∫ ∞

−∞
WΨf2(a, b)WΨf1

(
a

σ
,
b − τ

σ

)
dadb

a2 ,

(9.19)
where WΨ is the continuous wavelet transform with respect to the mother Ψ .
Using an arbitrary mother permits efficient precomputation of the wavelets
for all relevant τ and σ

The WB-WBCAF permits useful measurements to be made on an output
pulse. Fixing the scale at 1, determining the translation which provides the
maximal response gives a good estimate of the time delay associated with the
pulse. This measurement, which may be considered as a cross-correlation or
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the application of a matched filter, provides the parameter that gives the best
match with the reference. Note that we cannot determine the time delay as
easily at different scales, since the scaling operation also causes a shift in the
reference. We can normalize the WB-WBCAF and the WBCAF using (9.18)
at various values of σ

MAXτ (WBCAFf1f2[τ, σ])
MAXτ ′(WBCAFf1f1[τ ′, σ])

. (9.20)

This parameter, which we shall call the WBCAF absorption, can then be taken
to be proportional to the relative transmission of the band of frequencies
corresponding to scale σ. The reasoning here is that WBCAFf1f2(τ, σ) is
the spectral content of f2 with respect to f1 at σ and τ , while similarly
WBCAFf1f1(τ ′, σ) is the spectral content of f1. It is necessary to use different
values of τ because the pulses experience different time delays, and must first
be aligned in time to ensure that the WBCAF absorption is calculated using
the same part of each pulse. Finding the maximum value of the WBCAF in
τ achieves this. The ratio of these two should then give the power ratio of f1
to f2 at that σ.

Compression

The task of data compression has been approached via function transforms
in many ways [60]. At their simplest, the coefficients of a function’s Fourier
transform are often negligibly small (corresponding to harmonics that scarcely
appear in the function). One approach to compression is to derive a far more
compact representation of the transform by neglecting these coefficients. The
inverse Fourier transform of this compressed transform will then provide a
good approximation to the original function, since the information lost is
insignificant.

The same approach may be taken with the wavelet transform, where a
similar observation may be made about coefficients of small magnitude. Fig-
ure 9.9 shows a histogram of the frequency of occurrence of values of the
wavelet coefficients for the terahertz pulse in Figure 9.4(b). It is clear that
the majority of these are relatively insignificant. Wavelet compression could
be achieved by setting the smallest value coefficients to zero.

Clustering

Multidimensional data are often easily represented by clusters. The centers
(usually centroids) of these clusters may then be used as exemplars. If the
exemplars are indeed good examples of the data clustered around them, a
highly compact codebook representation of the data becomes available. Tera-
hertz imaging datasets can be interpreted as large, high-dimensional vectors;
at their simplest, each “pixel” (time series) can be taken as a vector of length



290 Elizabeth Berry et al.

Figure 9.9. The frequency of occurrence of values of the wavelet coefficients for the
terahertz pulse in Figure 9.4(b).

equal to the number of time samples it provides. Each vector is then termed
a “feature.” Alternatively, we might look for clustering of other features de-
rived from the pulses, such as Fourier or wavelet coefficients. A clustering of
these vectors might then seek out physical similarities in the sample under
inspection. Clustering has received much attention in the literature. The sim-
plest approach (and widely used) is the k-means algorithm [71], which may
be summarized as the following

1. Select N , the number of clusters to be formed.
2. Choose initial cluster centers v1, v2, . . . , vN .
3. Determine for each data point its closest “center.”
4. Recalculate centers as centroids of allocated data points.
5. Iterate from step 3 until no change.

It should be clear that this algorithm may be applied generally to any multi-
dimensional data. It has been the subject of significant work, in particular to
determine favorable values for N , and the initialization v1, v2, . . . , vN [72].

9.2.4 Transmission of Terahertz Radiation

In this work we have assumed the following simple model for the transmission
of the terahertz pulses.

Refractive Index

When considering the time delay caused by transmission through a thickness x
of material, compared with transmission through the same distance in vacuo.
Let the velocity in vacuo be c, and in the medium v. Then the difference in
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time taken by radiation following the two paths, ∆t = (x/v − x/c). But the
refractive index n, is defined as n = c/v, so

∆t = x(n − 1)/c. (9.21)

Thus, if the time delay is measured for a range of sample thickness, n can be
found from the slope of a plot of ∆t against x. The true refractive index of a
material varies with frequency, but the single value found by this technique is
a single broadband measurement and will be peculiar to the system on which
measurements were made.

Absorption Coefficient

The absorption of a beam of radiation of incident intensity I0, transmitted
through a thickness x, is described by the Beer–Lambert law,

I

I0
= e−µx or ln

(
I

I0

)
= − µx (9.22)

where µis the linear absorption coefficient. If scattering is considered to be
negligible, a plot of ln(I/I0) against x is linear with slope −µ, as for a given
material and with the simple geometry of the samples used here, reflection
losses will be constant and do not affect the slope of the graph. The Beer–
Lambert expression was used in the time domain to give an estimate of the
broadband absorption coefficient. In this work we also apply it in the fre-
quency domain to give the absorption coefficient as a function of frequency,
and in the STFT and WBCAF analyses. In the latter cases the relevant linear
absorption coefficient is derived by replacing I/I0 with an estimate of maxi-
mum transmittance (over t or τ) derived from the STFT or WBCAF; in the
case of the WBCAF this is defined by (9.20).

9.3 Methods

9.3.1 Optical Properties of Materials

We wanted to use samples whose optical properties were known not to vary
with time, and in spite of our interest in biomedical applications, this ruled
out the use of tissue samples. The acquisition time was long enough for tis-
sue samples to dehydrate and change the values we were trying to measure.
So specially manufactured test objects were used instead. Two step-wedges
were manufactured by rapid prototyping [73]. One, from nylon (Duraform
polyamide, nylon 12) by the selective laser sintering process. The other made
of resin by stereo-lithography. The test objects had steps of known thickness
ranging from 0.1 mm to 7 mm and are shown in Figure 9.10.
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Transmission data were acquired from both step wedges, using the pulsed
terahertz imaging system at JW Goethe-Universität, Frankfurt. The time se-
ries recorded at each pixel comprised 128 points, separated by 0.15 ps for the
nylon step wedge and at 0.2 ps for the resin step wedge. Parametric images
representing the step wedge data are shown in Figure 9.11.

Figure 9.10. Nylon (left) and resin (right) step wedges. Each block measures ap-
proximately 4 cm × 3 cm × 1 cm.

(a) (b) (c)

Figure 9.11. Parametric terahertz-pulsed images taken from the nylon step wedge
data set. The white end of the gray scale represents large values, and as in Figure 9.12
the thinnest step is at the left. (a) Pulse amplitude relative to reference pulse am-
plitude, in time domain. (b) Time delay between transmitted pulse peak and peak
of reference. (c) Transmittance (ratio of transmitted and incident intensities after
Fourier transformation of pulses) at 1.2THz.

Refractive Index, Broadband, and as a Function of Frequency

Two methods for finding the broadband refractive index were used — the
conventional time domain analysis and the WBCAF analysis. STFT analysis
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was used to find the variation of refractive index with frequency. For the
conventional analysis, the time delay was estimated for each pixel in the time
domain. For the wavelet-based analysis, the WBCAF was calculated at scale
1, and the time delay was the value of τ that maximized the correlation (9.18).
For the STFT analysis, the STFT was performed using a Gaussian window
of width 1.5 ps. For each frequency, the time delay was the time at which the
value of the STFT was a maximum. In each case, the mean value for the time
delay was found within a region of interest, approximately 40 ∗ 40 pixels, one
in each step. Time delay was plotted against step depth, and the refractive
index was found using (9.21). The standard error of the slope was calculated.

Attenuation: Broadband and as a Function of Frequency or Scale

For each material, a region of interest approximately 40 ∗ 40 pixels was defined
in each step of the wedge.

1. A broadband estimate of transmittance was made, using the square of the
measured peak amplitude in the time domain I/I0. These results were
plotted against step thickness and (9.22) used to calculate the broadband
linear absorption coefficient

2. Following Fourier transformation, the transmittance I(ωi)/I0(ωi) was cal-
culated at several values of frequency. At each frequency, (9.22) was used
to calculate the linear absorption coefficient, and these results were plotted
against frequency.

3. Following short-time Fourier transformation, the maximum transmittance,
maxt(I(ωi)/I0(ωi)) was calculated at several values of frequency. At each
frequency, this value was substituted for I/I0 in (9.22), and was used
to calculate the STFT linear absorption coefficient. These results were
plotted against frequency.

4. Equation (9.20) was used to calculate the proposed WBCAF-absorption
at 13 values of scale. At each scale, this value was substituted for I/I0 in
(9.22), and was used to calculate the WBCAF linear absorption coefficient.
These results were plotted against scale.

In each case the standard deviation of the linear absorption coefficient was
determined from the plot against step thickness. The results of the analyses
were not directly comparable because the wavelet-based technique gives re-
sults in terms of scale rather than frequency, but it was possible to inspect
the plots of absorption parameters to gain a qualitative impression of their
ability to discriminate between materials.

9.3.2 Signal Compression

The conventional calculations to determine the refractive index and absorption
coefficient associated with the nylon step wedge, described in Section 9.3.1,
were repeated using a range of reduced versions of the wavelet transform.
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These reductions were compressions of the transform data obtained by set-
ting to zero the smallest (in magnitude) p% of coefficients, before performing
the calculations. This common form of compression does not, of course, result
in the data requiring (100 − p)% space, since the resulting sparse arrays re-
quire indexing information to locate the surviving coefficients. Nevertheless,
given that we experimented with values of p in excess of 50, the potential for
compression of the (real valued) data is clear.

The quality of the results generated was easy to assess in the case of the
refractive index; taking the uncompressed transform data as a gold standard,
a simple numerical comparison permitted an evaluation of the result extracted
from the compressed form. The absorption coefficient measurement was gen-
erated at a range of terahertz frequencies. These results were compared with
those from the uncompressed data by calculating the Pearson correlation co-
efficient (measuring the degree of linear relationship between data sets), the
root mean square difference, and Student’s paired t-test probability, which
provides a confidence estimate for a set of pairs of observations being match-
ing pairs [74].

9.3.3 Clustering Demonstrations

Synthetic Image of Tooth Slice

Our first experiment on clustering was designed to determine the importance
of initialization on the success of the classification, and to compare various
choices of feature vector. We used a synthetic image data set because in that
case the class of each pixel is known, and this can be used to determine the
success of the classification. A 50 ∗ 50 pixel image of a slice of a tooth was
generated. Each pixel was set to belong to one of three classes comprising
tooth enamel, tooth dentine, and air, and these were distributed in a realistic
configuration by tracing the outlines from an image of a tooth slice. This is
illustrated in Figure 9.12(a). A typical time series for each material was taken
from a real data set, and noise was modeled by adding normally distributed
noise, with values selected at random from the distribution, to each time point
of the time series at each pixel. The noise was taken from a single Gaussian
distribution; the mean of the distribution was taken from inspection of time
series from the background of the real image, and the standard deviation
chosen empirically. The validity of this noise model is discussed in Section 9.5.
In this preliminary experiment partial volume effects were not incorporated
into the model. Three parametric images representing the synthetic data are
shown in Figures 9.12(b)–(d).

The number of clusters was set to three, representing air, enamel, and
dentine, and standard k-means clustering with random initialization was used
[75]. Four different feature vectors were used: for 1–3 the vector dimension
was 64 or 128 depending on the number of time samples in the data:

1. The time series.
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(a) (b) (c) (d)

Figure 9.12. (a) Allocation of classes in the synthetic image of a tooth slice. Black
represents enamel, gray dentine, and white air. (b)–(d) Parametric terahertz-pulsed
images taken from the synthetic data set. (b) Pulse amplitude relative to refer-
ence pulse amplitude, in time domain. (c) Time delay between transmitted pulse
peak and peak of reference. (d) Transmittance (ratio of transmitted and incident
intensities after Fourier transformation of pulses) at 0.85THz.

2. Fast Fourier transform (FFT) of time series.
3. Discrete wavelet transform (DWT) of time series.
4. A three dimensional vector using three parameters calculated from the

time series. These were the integral phase shift between 0.5 and 1 THz,
the integral phase shift between 1 and 1.5 THz and the absorbance A =
−log10(I/I0) at 1 THz. The three parameters were normalized to be uni-
variate within a unit hypercube to ensure that differences in units between
them did not bias the outcome.

The result of using random initialization was, as expected, that many
classifications were “unsuccessful,” for example, many of the air pixels were
wrongly classed as enamel or dentine, or where only two classes resulted. Fu-
ture work will concentrate on refining the initialization, but for these initial
experiments we simply repeated each classification several times, and termed
it “successful” if the result was three contiguous regions broadly occupying the
relevant locations. For each “successful” classification the number of misclas-
sified pixels in the image was determined as a percentage of the total number
of pixels.

Terahertz-Pulsed Image of Tooth Slice

The same methods of classification were used on a nonsynthetic image of
a dehydrated tooth slice of thickness approximately 200 µm. Transmission
data were acquired from an area 22.2 mm ∗ 9 mm, using the pulsed terahertz
imaging system at the University of Leeds. The image array was 56 ∗ 56 pixels,
and the time series recorded at each pixel comprised 64 points separated by
0.15 ps. Three parametric images representing the tooth data are shown in
Figure 9.13.

Unlike the synthetic tooth data, there are no known classes for this data.
To allow the results to be assessed against an independent modality we ac-
quired a radiograph of the tooth slice using a dental x-ray system operating
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(a) (b) (c)

Figure 9.13. Parametric terahertz-pulsed images taken from the tooth slice data
set. (a) Pulse amplitude relative to reference pulse amplitude, in time domain. (b)
Time delay between transmitted pulse peak and peak of reference. (c) Transmittance
(ratio of transmitted and incident intensities after Fourier transformation of pulses)
at 0.85THz.

at 60 kV. Using a commercial biomedical image processing package (Analyze,
AnalyzeDirect.com, Lenexa, Kansas, USA), this image was registered to a
parametric image derived from the terahertz-pulsed image data. Interactive
region growing was used to define the enamel, dentine, and air regions on
the registered x-ray image. These definitions were used to produce an outline
that was overlaid on the clustering results, to give a visual indication of the
accuracy of the classification. The percentage of misclassified pixels was de-
termined. Further quantification was not attempted because the tooth slice
was not of perfectly uniform thickness, being thinner at the top right, and
this would lead to errors in the classification based on automatic clustering.

Terahertz-Pulsed Images of Histopathological Samples

Classification techniques were run on two further data sets. In these cases
unregistered optical images were available for comparison, and it is impor-
tant to note that clinically important differences will not necessarily be seen
in the photograph. The image data sets were acquired from wax embedded
histopathologically prepared sections of tissue, of thickness 1 mm. The prepa-
ration involved dehydration and fixing with formalin, and this means that
terahertz radiation was able to penetrate the tissue more readily than would
be the case if the tissue were fresh. Transmission data were acquired from
both, using the pulsed terahertz imaging system at the University of Leeds.
The first example was of basal cell carcinoma and the second melanoma. In
each case the time series recorded at each pixel comprised 64 points separated
by 0.15 ps. For the basal cell carcinoma the image array was 56 ∗ 56 pixels
over an area 10 mm ∗ 10 mm, for the melanoma the image array was 20 by 18
pixels over an area 5 mm ∗ 4.5 mm.
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k-means clustering on the fast Fourier transform coefficients of the time
series was applied to the basal cell carcinoma data, using five and eight classes.
For the melanoma, the fast Fourier transform coefficients were again used,
this time with both k-means clustering and vector quantization, each for five
classes. Three parametric images representing the basal cell carcinoma and
melanoma histopathological data are shown in Figure 9.14.

(a) (b) (c)

Figure 9.14. Parametric terahertz-pulsed images taken from the histopathologi-
cal basal cell carcinoma (top) and melanoma (below) data sets. (a) Pulse amplitude
relative to reference pulse amplitude, in time domain. (b) Time delay between trans-
mitted pulse peak and peak of reference. (c) Transmittance (ratio of transmitted
and incident intensities after Fourier transformation of pulses) at 2THz.

Matlab (Version 6, The MathWorks, Inc., Cambridge, UK) was used for
the post-acquisition image and signal analysis work described in this section.

9.4 Results

9.4.1 Optical Properties of Materials

Refractive Index: Broadband and as a Function of Frequency

Results for the broadband refractive index are shown in Table 9.1, and the
variation of refractive index with frequency from the STFT analysis is in
Figure 9.15. It can be seen that the refractive index decreases with increasing
frequency, and is higher for resin than for nylon, which is consistent with the
broadband results.

These results illustrate that any image reconstruction algorithm requiring
an assumption of negligible dispersion would be valid for nylon but not for
resin.
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Table 9.1. Results of refractive index measurements, mean ± standard deviation

Nylon Resin

Conventional time domain 1.603 ± 0.004 1.66 ± 0.01
WBCAF at scale 1 1.597 ± 0.005 1.64 ± 0.02

Figure 9.15. STFT refractive index against frequency for nylon (left) and resin
(right). Error bars show ± one standard deviation.

Attenuation: Broadband and as a Function of Frequency

From the conventional broadband analysis, for nylon the linear absorption
coefficient was 6.8± 0.5 cm−1 and for resin 11.8± 1.6 cm−1. Figure 9.16(a)
shows the variation of linear absorption coefficient with frequency, using con-
ventional Fourier analysis. The two materials may be differentiated through-
out the frequency range by their linear absorption coefficient. Figure 9.16(b)
shows the variation of the STFT linear absorption coefficient with frequency.
As was the case for the conventional Fourier analysis the two materials may
be differentiated throughout the frequency range by their STFT absorption
coefficient. The values diverge with increasing frequency as the curves diverge
for the conventional analysis, but the analysis is robust to a higher frequency.
This is likely to be a consequence of the windowed nature of the transform,
and suggests that the STFT may be valuable for analysis of noisy data such
as that acquired from tissue in our system between 1.5 and 2.5 THz.

Figure 9.17 shows the variation of the WBCAF linear absorption coeffi-
cient with frequency. As was the case for the conventional Fourier analysis the
two materials may be differentiated throughout the scale range by their WB-
CAF absorption coefficient, which is higher for resin than for nylon. The values
diverge as the scale decreases, which corresponds with the way in which the
curves diverge with increasing frequency for the conventional and STFT anal-
yses. For nylon, the WBCAF linear absorption coefficient is almost constant
with scale, in contrast to the behavior with frequency of the linear absorption
coefficient calculated both by conventional methods and using the STFT.
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(a) (b)

Figure 9.16. (a) Conventional Fourier analysis to show the variation of the linear
absorption coefficient with frequency (b) STFT analysis to show the variation of
the STFT linear absorption coefficient with frequency. The error bars have been
omitted from the resin STFT data points — they were of approximately the size of
the symbol, where shown they represent ± one standard deviation.

Thus, for some materials, reconstruction methods that require an assump-
tion of negligible changes in absorption with frequency could appropriately
be tackled using a wavelet approach.

Figure 9.17. Results of WBCAF analysis to show the variation of the WBCAF
linear absorption coefficient with scale.

9.4.2 Signal Compression

Refractive Index

Compression to very high levels has a negligible impact on the broadband
refractive index calculations (Table 9.2). This measurement is robust until 90%
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Table 9.2. Broadband refractive index, n, for different compression levels.

Coefficients removed / % 0 50 80 90 95

n 1.603 1.603 1.604 1.603 1.61
Standard deviation of n 0.002 0.002 0.003 0.005 0.01

(a) (b)

Figure 9.18. (a) The terahertz pulse of Figure 9.4(b) transmitted through 1mm
of the nylon step-wedge compressed by removal of 50%, 80%, 90%, and 95% of the
smaller coefficients. The pulses are shown offset in the amplitude direction for clarity.
(b) Linear absorption coefficient against frequency for nylon using conventional
Fourier analysis, at various degrees of wavelet compression. To allow comparison, the
results for the various degrees of compression have been offset from the uncompressed
result at intervals of 10 cm−1.

of the coefficients are removed, at which point a small error is introduced. The
terahertz pulse of Figure 9.4(b) is shown in Figure 9.18 reconstructed from
the discrete wavelet transform after the truncation of 50%, 80%, 90%, and
95% of the smaller coefficients. As expected, the major feature of the pulse
(the main peak) is unaffected, while the truncation removes more and more
of the smaller scale features, which we might expect to be largely noise.

Absorption Coefficient

The results of the statistical tests of similarity between the uncompressed and
compressed observations across a range of frequencies from 0.52 to 1.46 THz
at intervals of 0.05 THz, for various truncations, are shown in Table 9.3. Fig-
ure 9.18(b) shows the absorption coefficient at selected frequencies, for various
truncations. More detailed results are presented elsewhere [76]. Up to about
1 THz, the curves coincide. However, note that the spectral feature at 1.1 THz
is lost when 90% of the coefficients are removed, and significant errors appear
at 95%. The statistical tests all suggested that there is no significance in the
differences as far as 10% compression (90% of the coefficients are removed),
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the global nature of the statistic masked the disappearance of a local feature,
which could be of importance.

Table 9.3. Results of statistical tests comparing absorption coefficient cm −1 at
various degrees of compression.

Coefficients removed / % 0% 50% 80% 90% 95%

Pearson correlation 1.0 0.999 0.997 0.992 0.495
RMSD 0 0.09 0.61 0.97 7.05
P (paired t) — 0.43 0.85 0.40 0.06

9.4.3 Clustering

Synthetic Image of Tooth Slice

Clustering performed on the synthetic tooth image produced promising re-
sults. Table 9.4 records the percentage of misclassified pixels as a result of
clustering the entire pulse data, the FFT of the pulse data, the DWT, and
a 3D feature vector. The high quality of these results is partly because the
issue of initialization was not addressed. The basic k-means algorithm is very
susceptible to initialization, and some runs produced very poor results that
were simply excluded in these experiments. We have not yet experimented
with more intelligent initialization procedures, but once this is done we would
expect results approaching this quality.

Table 9.4. Percentage of misclassified pixels: Tooth slice.

Synthetic image of tooth slice % misclassified

Time series 0
FFT coefficients 0.04
DWT coefficients 0
Feature vector 1

Terahertz-Pulsed Image of Tooth Slice

Results for the image of the 200 µm tooth slice are presented in Table 9.5.
Figure 9.19 illustrates classifications resulting from time series, FFT, and

feature-vector clustering. The pulse relative amplitude image is shown as an
indicator of where physical boundaries in the sample lie. The boundaries seg-
mented from the radiograph are shown in white as an overlay.
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Table 9.5. Percentage of misclassified pixels: Tooth slice.

Terahertz pulsed image of tooth slice % misclassified

Time series 19
FFT coefficients 23
DWT coefficients 19
Feature vector 13

(a) (b) (c) (d)

Figure 9.19. The tooth slice data set. (a) Parametric terahertz-pulsed image show-
ing pulse amplitude relative to reference pulse amplitude, in time domain. (b) Result
of clustering using the whole time series in the time domain. (c) Result of clustering
using the FFT coefficients. (d) Result of clustering using the 3D feature vector. In
(b)–(d) air is shown in black, enamel in dark gray, and dentine in light gray. The
white outline indicates the boundaries of dentine and enamel that were identified
interactively on the radiograph of the tooth slice.

Terahertz-Pulsed Images of Histopathological Samples

Results from performing clustering on the hisopathological data sets are shown
in Figures 9.20 and 9.21. For the basal cell carcinoma data a feature is em-
phasized in white at the center of Figure 9.20(b) which is not apparent in
the photograph. As stated previously, one does not expect clinically impor-
tant features necessarily to be obvious in the photograph. The feature is also
evident in the transmittance terahertz image shown earlier in Figure 9.14(c),
but use of the FFT coefficients in the clustering has defined it more clearly.

For the melanoma data set the classes returned by the two types of cluster-
ing differ. Again they do not correspond with the regions of the photograph,
nor were they expected to. The mid-gray feature shown by clustering using
the FFT coefficients in Figure 9.21(b) is also apparent to a lesser extent in
each of the parametric images in Figure 9.14.

9.5 Discussion

Terahertz-pulsed imaging is a relatively new modality that records large datasets
that are difficult to visualize. Conventional Fourier and time domain tech-
niques are widely used for analysis, but there is no standardization on the
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(a) (b) (c)

Figure 9.20. The basal cell carcinoma data set. (a) Photograph showing the
histopathologically prepared sample. (b) Result of clustering into five classes us-
ing the using the FFT coefficients. (c) Result of clustering into eight classes using
the using the FFT coefficients.

(a) (b) (c)

Figure 9.21. The melanoma data set. (a) Photograph showing the histopatho-
logically prepared sample, with the melanoma outlined. The terahertz imaged area
corresponds to the lower right quadrant of this photograph. (b) Result of k-means
clustering into five classes using the using the FFT coefficients. (c) Result of vector
quantization clustering into five classes using the FFT coefficients.

methods or presentation of data. A powerful addition to the analysis would
be the ability to consider time and frequency independently, but this is not
possible using the Fourier transform, so time-frequency techniques such as
the STFT and wavelets have been considered. The limitations of the uncer-
tainty principle on the STFT means that it would be necessary to run the
analysis many times to get a complete picture of the variations with time
and frequency. Wavelet analysis, although still constrained by the uncertainty
principle, can give a more complete picture from a single analysis. Wavelet
analysis has proved successful in related areas where analysis of time series
is required, including ultrasound and radar. The analysis is particularly at-
tractive for use with terahertz pulses because they can be described very
efficiently by wavelets, where the Fourier transform is a less efficient basis.
This is encouraging for applications such as compression and noise reduction,
and may be an advantage in other analytical methods. Wavelet techniques
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are also attractive experimentally, because there is an established theoretical
background and robust software is available.

In this work we investigated a range of potential alternatives to conven-
tional Fourier analysis. We have shown that, for our test materials, the STFT
and wavelet analyses give, within experimental error, the same result for re-
fractive index as the conventional method. The simple WBCAF analysis in-
volves estimation of time delays only at scale 1 because changing the scale
results in an associated time shift. Extension to higher scales is an area for fu-
ture work. The absorption coefficients produced by conventional and wavelet
analysis are not directly comparable, because the conventional analysis pro-
duces values at given frequencies, while the wavelet results are plotted against
scale, each of which represents a range of frequencies. However, we see a similar
pattern of differences between two materials in this simple case of transmission
imaging, and believe that the opportunity to focus on particular time periods
with wavelets will be helpful for more complex images. In addition, a mate-
rial that showed increasing absorption coefficient with frequency by Fourier
techniques demonstrated an almost constant WBCAF absorption coefficient
with scale. This may be a property that could be exploited in reconstruction
techniques that require an assumption of negligible variation in absorption
with frequency . It is a limitation of the work presented here that only two
materials were studied, and neither of these was biomedical. In such mate-
rial, biological variation is expected, and the value of the optical parameters
will vary from sample to sample [19]. Nor will tissue be neatly arranged as a
step wedge, so a smaller number and range of thicknesses would be available.
Adaptation of existing techniques for refractive index estimation, which have
been successful for characterizing semiconductors [77, 78], will be needed.

An understanding of the imaging process is often fundamental to success-
ful analysis of medical imaging data [79, 80]. There are still many factors that
need to be included in the analysis, perhaps by including a model of the imag-
ing process such as diffraction, scattering, pulse shape, partial volume effects,
frequency dependent amplitude and frequency-dependent spatial resolution.
It should also be possible to exploit models of how the pulses are expected to
appear [81], especially with advances in pulse shaping [82].

In this work a very simple model of the noise in terahertz pulsed images
was used when making the synthetic tooth data set. Recent analysis has shown
that a single Gaussian does not correctly model the noise, and improving the
noise model is an area of current research. These are very early results, but
clearly do not rule out the use of time-frequency techniques in this field. The
robust results from these initial experiments in the simplest case of using
transmission data through a single layer give us confidence for applying adap-
tations of the methods to data where time localization will be important for
identifying which pulse corresponds with which boundary.

The use of wavelets for signal compression is a well known application, and
it would be of real practical benefit in terahertz pulsed imaging. Our initial
work presented here has highlighted the difficulties associated with quantifying
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the effect of such compression. Statistical tests showed no significant difference
between pulses where, by eye, it could be seen that a potentially relevant
spectral feature had been lost. Testing of the effect of compression is therefore
application specific, and one must address the question of whether the final
conclusion has been affected by the process. In our particular example, we
sought changes to the measured values of refractive index, and in this case
the loss of the spectral feature was not important. We suspect that this will not
be the case when terahertz-pulsed imaging moves into clinical and laboratory
use.

The idea of using clustering methods that use more of the information in
the time series at each pixel than just two or three parameters is very at-
tractive, and has been used successfully in other fields [66]. Our work here
is very preliminary, and the next stage is to perform a study on large num-
bers of samples for which we have a gold standard classification by another
technique, for evaluation. However, from these early results it appears that
robust segmentation, using features derived from the terahertz pulses is a real
possibility. The incorporation of knowledge about likely signal changes from
particular disease processes could be built in to the classification scheme, and
classified data may form the input for filtered back projection.

Terahertz-pulsed imaging is in its infancy, and in order to speed up the
imaging process many of the early systems do not collect the whole time series
at each pixel. Even when data from the whole pulse are available, users display
or use parametric images for further calculation without an understanding of
the most appropriate choice of parameter to emphasize a feature of interest.
In this work, we have presented preliminary simple experiments to investigate
techniques that made use of all the information in each pulse. The results
from these justify further investigation in this area and our aim is to provide
tools for the user that will optimize their use of the spectroscopic information
hidden in each terahertz signal.

9.6 Acknowledgments

We are grateful for financial support for this work under the Teravision project
by the European Union (IST-1999-10154), and by the Engineering and Phys-
ical Sciences Research Council via a project grant (GR/N39678), a P.h.D stu-
dentship and conference support (GR/R85280). Biomedical terahertz imaging
research in our institution is under the direction of Professors J.M. Chamber-
lain and M.A. Smith. We thank them, N.N. Zinov’ev and R.E. Miles at the
University of Leeds, and K. Siebert and T. Loeffler of the Physikalisches In-
stitut der JW Goethe-Universität, Frankfurt, for their expertise in terahertz
imaging that has allowed us to pursue computer vision work in the field. A.J.
Marsden manufactured the step wedges; D.J. Wood, F. Carmichael and S.
Strafford provided dental specimens and expertise; J. Bull and M. Fletcher



306 Elizabeth Berry et al.

carried out x-ray imaging; J. Biglands performed additional software work;
and G.C. Walker commented on the manuscript.

References

[1] Allen, S.J., Craig, K., Galdrikian, B., Heyman, J.N., Kaminski, J.P.,
Scott, J.S.: Materials science in the far-IR with electrostatic based FELs.
Nuclear Instruments & Methods in Physics Research Section A; Accel-
erators Spectrometers Detectors and Associated Equipment 35 (1995)
536–539

[2] Jaroszynski, D.A., Ersfeld, B., Giraud, G., Jamison, S., Jones, D.R., Issac,
R.C.: The Strathclyde terahertz to optical pulse source (TOPS). Nuclear
Instruments & Methods in Physics Research, Section A: Accelerators
Spectrometers Detectors and Associated Equipment 445 (2000) 317–31

[3] Grischkowsky, D.R., Mittleman, D.M.: Introduction. In Mittleman, D.,
ed.: Sensing with Terahertz Radiation. Springer-Verlag, Berlin (2003)
1–38

[4] Auston, D.H., Nuss, M.C.: Electrooptic generation and detection of fem-
tosecond electrical transients. IEEE Journal of Quantum Electronics 24
(1988) 184–197

[5] Kleine-Ostmann, T., Knobloch, P., Koch, M., Hoffmann, S., Breede, M.,
Hofmann, M.: Continuous-wave THz imaging. Electronics Letters 37
(2001) 1461–146

[6] Siebert, K.J., Quast, H., Leonhardt, R., Loeffler, T., Thomson, M.,
Bauer, T.: Continuous-wave all-optoelectronic terahertz imaging. Ap-
plied Physics Letters 80 (2002) 3003–3005

[7] Gallerano, G.P., Doria, A., Giovenale, E., Renieri, A.: Compact free
electron lasers: From Cerenkov to waveguide free electron lasers. Infrared
Physics & Technology 40 (1999) 161–174

[8] Grischkowsky, D., Keiding, S., van Exter, M., Fattinger, C.: Far-infrared
time-domain spectroscopy with terahertz beams of dielectrics and semi-
conductors. Journal of the Optical Society of America, B: Optical Physics
7 (1990) 2006–201

[9] van Exter, M., Grischkowsky, D.R.: Carrier dynamics of electrons and
holes in moderately doped silicon. Phys. Rev. B 41 (1990) 12140–12149

[10] Kindt, J.T., Schmuttenmaer, C.A.: Far-infrared dielectric properties of
polar liquids probed by femtosecond terahertz-pulse spectroscopy. Jour-
nal of Physical Chemistry 100 (1996) 10373–10379

[11] Hu, B.B., Nuss, M.C.: Imaging with terahertz waves. Optics Letters 20
(1995) 1716–171

[12] Wu, Q., Hewitt, T.D., Zhang, X.C.: Two-dimensional electro-optic imag-
ing of THz beams. App. Phy. Lett. 69 (1996) 1026–1028



Chapter 9 Time-Frequency Analysis in Terahertz-Pulsed Imaging 307

[13] Herrmann, M., Tani, M., Sakai, K.: Display modes in time-resolved ter-
ahertz imaging. Japanese Journal of Applied Physics, Part 1: Regular
Papers, Short Notes & Review Papers 39 (2000) 6254–625

[14] Loeffler, T., Bauer, T., Siebert, K.J., Roskos, H.G., Fitzgerald, A., Cza-
sch, S.: Terahertz darkfield imaging of biomedical tissue. Optics Express
9 (2001) 616–62

[15] Ruffin, A.B., Van Rudd, J., Decker, J., Sanchez-Palencia, L., Le Hors,
L., Whitaker, J.: Time reversal terahertz imaging. IEEE Journal of
Quantum Electronics 38 (2002) 1110–111

[16] Mittleman, D.M., Hunsche, S., Boivin, L., Nuss, M.C.: T-ray tomography.
Optics Letters 22 (1997) 904–90

[17] Dorney, T.D., Symes, W.W., Baraniuk, R.G., Mittleman, D.M.: Tera-
hertz multistatic reflection imaging. Journal of the Optical Society of
America, A: Optics Image Science and Vision 19 (2002) 1432–144

[18] Ferguson, B., Wang, S.H., Gray, D., Abbot, D., Zhang, X.C.: T-ray
computed tomography. Optics Letters 27 (2002) 1312–131

[19] Berry, E., Fitzgerald, A.J., Zinovev, N.N., Walker, G.C., Homer-
Vanniasinkam, S., Sudworth, C.D.: Optical properties of tissue measured
using terahertz-pulsed imaging. Proceedings of SPIE: Medical Imaging
5030 (2003)

[20] Loeffler, T., Siebert, K.J., Czasch, S., Bauer, T., Roskos, H.G.: Visual-
ization and classification in biomedical terahertz-pulsed imaging. Physics
in Medicine and Biology 47 (2002) 3847–3852

[21] Ferguson, B., Wang, S., Gray, D., Abbott, D., Zhang, X.C.: Identification
of biological tissue using chirped probe THz imaging. Microelectronics
Journal 33 (2002) 1043–105

[22] Mittleman, D.M., Jacobsen, R.H., Nuss, M.C.: T-ray imaging. IEEE
Journal of Selected Topics in Quantum Electronics 2 (1996) 679–69

[23] Mickan, S., Abbott, D., Munch, J., Zhang, X., van Doorn, T.: Analysis
of system trade-offs for terahertz imaging. Microelectronics Journal 31
(2000) 503–51

[24] Ferguson, B., Abbott, D.: De-noising techniques for terahertz responses
of biological samples. Microelectronics Journal 32 (2001) 943–95

[25] Auston, D.H., Cheung, K.P., Valdmanis, J.A., Kleinman, D.A.: Coherent
time-domain far-infrared spectroscopy with femtosecond pulses. Journal
of the Optical Society of America A: Optics Image Science and Vision 1
(1984) 1278

[26] Zhang, X.C., Jin, Y., Hu, B.B., Li, X., Auston, D.H.: Optoelectronic
study of piezoelectric field in strained-layer superlattices. Superlattices
and Microstructures 12 (1992) 487–490

[27] Shan, J., Weling, A.S., Knoesel, E., Bartels, L., Bonn, M., Nahata, A.:
Single-shot measurement of terahertz electromagnetic pulses by use of
electro-optic sampling. Optics Letters 25 (2000) 426–42



308 Elizabeth Berry et al.

[28] Ruffin, A.B., Decker, J., Sanchez-Palencia, L., Le Hors, L., Whitaker,
J.F., Norris, T.B.: Time reversal and object reconstruction with single-
cycle pulses. Optics Letters 26 (2001) 681–68

[29] Mittleman, D.M., ed.: Sensing with Terahertz Radiation. Springer-
Verlag, Berlin (2003)

[30] Zimdars, D.: Commercial T-ray systems accelerate imaging research.
Laser Focus World 37 (2001) 91

[31] Arnone, D.D., Ciesla, C.M., Corchia, A., Egusa, S., Pepper, M.: Appli-
cations of terahertz (THz) technology to medical imaging. Proceedings
of SPIE 3828 (1999) 209–219 Terahertz Spectroscopy and Applications
11; JM Chamberlain (ed.).

[32] Mittleman, D.M., Gupta, M., Neelamani, R., Baraniuk, R.G., Rudd, J.V.,
Koch, M.: Recent advances in terahertz imaging. Applied Physics B-
Lasers and Optics 68 (1999) 1085–109

[33] Smye, S.W., Chamberlain, J.M., Fitzgerald, A.J., Berry, E.: The in-
teraction between terahertz radiation and biological tissue. Physics in
Medicine and Biology 46 (2001) R101–R112

[34] Hadjiloucas, S., Karatzas, L.S., Bowen, J.W.: Measurements of leaf wa-
ter content using terahertz radiation. IEEE Transactions on Microwave
Theory and Techniques 47 (1999) 142–149

[35] Boulay, R., Gagnon, R., Rochette, D., Izatt, J.R.: Paper sheet moisture
measurements in the far-infrared. International Journal of Infrared and
Millimeter Waves 5 (1984) 1221–1234

[36] Cole, B.E., Woodward, R., Crawley, D., Wallace, V.P., Arnone, D.D.,
Pepper, M.: Terahertz imaging and spectroscopy of human skin, invivo.
Commercial and Biomedical Applications of Ultrashort Pulse Lasers;
Laser Plasma Generation and Diagnostics 4276 (2001) 1–10

[37] Institute, A.N.S.: American National Standard for Safe Use of Lasers
(ANSI Z136.1 - 2000). Laser Institute of America, Orlando, FL (2000)

[38] Sliney, D.H., Wolbarsht, M.L.: Laser Safety Standards: Evolution and
Rationale. Safety with Lasers and Other Optical Sources. Plenum Press,
New York (1980)

[39] Clothier, R.H., Bourne, N.: Effect of THz exposure on human primary
keratinocyte differentiation and viability. Journal of Biological Physics
29 (2003) 179–185

[40] Scarfi, M.R., Romano, M., Di Pietro, R., Zeni, O., Doria, A., Gallerano,
G.P.: THz exposure of whole blood for the study of biological effects on
human lymphocytes. Journal of Biological Physics 29 (2003) 171–176

[41] Berry, E., Walker, G.C., Fitzgerald, A.J., Chamberlain, J.M., Smye, S.W.,
Miles, R.E.: Do in vivo terahertz imaging systems comply with safety
guidelines? Journal of Laser Applications 15 (2003) 192–198

[42] Han, P.Y., Tani, M., Usami, M., Kono, S., Kersting, R., Zhang, X.C.: A
direct comparison between terahertz time-domain spectroscopy and far-
infrared Fourier transform spectroscopy. Journal of Applied Physics 89
(2001) 2357–235



Chapter 9 Time-Frequency Analysis in Terahertz-Pulsed Imaging 309

[43] Bolivar, P.H., Brucherseifer, M., Nagel, M., Kurz, H., Bosserhoff, A., But-
tner, R.: Label-free probing of genes by time-domain terahertz sensing.
Physics in Medicine and Biology 47 (2002) 3815–3821

[44] Bezant, C.D.: Application of THz Pulses in Semiconductor Relaxation
and Biomedical Imaging Studies. PhD thesis, Department of Physics
(2000)

[45] Han, P.Y., Cho, G.C., Zhang, X.C.: Time-domain transillumination of
biological tissues with terahertz pulses. Optics Letters 25 (2000) 242–24

[46] Ciesla, C.M., Arnone, D.D., Corchia, A., Crawley, D., Longbottom, C.,
Linfield, E.H.: Biomedical applications of terahertz-pulse imaging. Com-
mercial and Biomedical Applications of Ultrafast Lasers II 3934 (2000)
73–8

[47] Knobloch, P., Schildknecht, C., Kleine-Ostmann, T., Koch, M., Hoff-
mann, S., Hofmann, M.: Medical THz imaging: an investigation of histo-
pathological samples. Physics in Medicine and Biology 47 (2002) 3875–
388

[48] Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D.,
Linfield, E.H.: Terahertz-pulse imaging in reflection geometry of human
skin cancer and skin tissue. Physics in Medicine and Biology 47 (2002)
3853–3863

[49] Fitzgerald, A.J., Berry, E., Zinovev, N.N., Walker, G.C., Smith, M.A.,
Chamberlain, J.M.: An introduction to medical imaging with coherent
terahertz frequency radiation. Physics in Medicine and Biology 47 (2002)
R67–R8

[50] Hagness, S.C., Taflove, A., Bridges, J.E.: Two-dimensional FDTD anal-
ysis of a pulsed microwave confocal system for breast cancer detection:
Fixed-focus and antenna-array sensors. IEEE Transactions on Biomedi-
cal Engineering 45 (1998) 1470–147

[51] Wang, S., Ferguson, B., Mannella, C., Abbott, D., Zhang, X.C.: Powder
detection using THz imaging. In: Proceedings of Conference on Lasers
and Electro-Optics, Long Beach, CA (2002) 132

[52] McClatchey, K., Reiten, M.T., Cheville, R.A.: Time-resolved synthetic
aperture terahertz impulse imaging. Applied Physics Letters 79 (2001)
4485–448

[53] Jacobsen, R.H., Mittleman, D.M., Nuss, M.C.: Chemical recognition of
gases and gas mixtures with terahertz waves. Optics Letters 21 (1996)
2011–201

[54] Koch, M.: Biomedical applications of THz imaging. In Mittleman, D.,
ed.: Sensing with Terahertz Radiation. Springer-Verlag, Berlin (2003)
295–316

[55] Siegel, P.H.: Terahertz technology. IEEE Transactions on Microwave
Theory and Techniques 50 (2002) 910–928

[56] Anderton, R.N., Appleby, R., Borrill, J.R., Gleed, D.G., Price, S.,
Salmon, N.A. In: Prospects of Imaging Applications [Military]. IEE
(1997) 4/1–4/10



310 Elizabeth Berry et al.

[57] Papoulis, A.: The Fourier Integral and Its Application. McGraw-Hill,
New York (1962)

[58] Akay, M., ed.: Time Frequency and Wavelets in Biomedical Signal Pro-
cessing. IEEE Press and John Wiley & Sons (1998)

[59] Xu, X.L., Tewfik, A.H., Greenleaf, J.F.: Time-delay estimation using
wavelet transform for pulsed-wave ultrasound. Annals of Biomedical En-
gineering 23 (1995) 612–621

[60] Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Ma-
chine Vision. second edn. Brooks/Cole Publishing Company, Pacific
Grove, CA (1999)

[61] Georgiou, G., Cohen, F.S., Piccoli, C.W., Forsberg, F., Goldberg, B.B.:
Tissue characterization using the continuous wavelet transform, part II:
Application on breast RF data. IEEE Transactions on Ultrasonics Fer-
roelectrics and Frequency Control 48 (2001) 364–373

[62] Sun, M., Sclabassi, R.J.: Wavelet feature extraction from neurophysiolog-
ical signals. In Akay, M., ed.: Time Frequency and Wavelets in Biomedical
Signal Processing. IEEE Press and John Wiley & Sons (1998) 305–321

[63] Ching, P.C., So, H.C., Wu, S.Q.: On wavelet denoising and its applica-
tions to time delay estimation. IEEE Transactions on Signal Processing
47 (1999) 2879–2882

[64] Coifman, R.R., Wickerhauser, M.V.: Experiments with adapted wavelet
de-noising for medical signals and images. In Akay, M., ed.: Time Fre-
quency and Wavelets in Biomedical Signal Processing. IEEE Press and
John Wiley & Sons, Piscataway, NJ (1998) 323–346

[65] Sardy, S., Tseng, P., Bruce, A.: Robust wavelet denoising. IEEE Trans-
actions on Signal Processing 49 (2001) 1146–115

[66] Lasch, P., Naumann, D.: FT-IR microspectroscopic imaging of human
carcinoma thin sections based on pattern recognition techniques. Cellular
and Molecular Biology 44 (1998) 189–20

[67] Carmona, R., Hwang, W.L., Torresani, B.: Practical Time-Frequency
Analysis. Academic Press, San Diego (1998)

[68] Gioswami J. C., Chan, A.K.: Fundamentals of Wavelets: Theory, Algo-
rithms, and Applications. John Wiley and Sons, New York (1999)

[69] Weiss, L.G.: Wavelets and wideband correlation processing. IEEE Signal
Processing Magazine 11 (1994) 13–32

[70] Young, R.K.: Wavelet Theory and Its Applications. Kluwer, Boston
(1993)

[71] MacQueen, J.: Some methods for classification and analysis of multi-
variate observations. In: Proceedings of 5th Berkeley Symposium 1.
(1967) 281–297

[72] Kaufmann, L., Rousseeuw, P.J.: Finding groups in data: An introduction
to cluster analysis. John Wiley & Sons, New York (1990)

[73] Webb, P.A.: A review of rapid prototyping (RP) techniques in the medical
and biomedical sector. Journal of Medical Engineering & Technology 24
(2000) 149–15



Chapter 9 Time-Frequency Analysis in Terahertz-Pulsed Imaging 311

[74] Goulden, C.H.: Methods of Statistical Analysis. second edn. John Wiley
and Sons, New York (1956)

[75] Hartigan, J.: Clustering Algorithms. John Wiley and Sons, New York
(1975)

[76] Handley, J.W., Fitzgerald, A.J., Berry, E., Boyle, R.D.: Wavelet com-
pression in medical terahertz-pulsed imaging. Physics in Medicine and
Biology 47 (2002) 3885–389

[77] Duvillaret, L., Garet, F., Coutaz, J.L.: A reliable method for extraction
of material parameters in terahertz time-domain spectroscopy. IEEE
Journal of Selected Topics in Quantum Electronics 2 (1996) 739–74

[78] Dorney, T.D., Baraniuk, R.G., Mittleman, D.M.: Material parameter
estimation with terahertz time-domain spectroscopy. Journal of the Op-
tical Society of America, A: Optics Image Science and Vision 18 (2001)
1562–157

[79] Highnam, R., Brady, M.: Mammographic Image Analysis. Kluwer Aca-
demic Publishers, Dordrecht (1999)

[80] Cotton, S., Claridge, E., Hall, P.: Noninvasive skin imaging. Information
Processing in Medical Imaging 1230 (1997) 501–50

[81] Duvillaret, L., Garet, F., Roux, J.F., Coutaz, J.L.: Analytical model-
ing and optimization of terahertz time-domain spectroscopy experiments
using photoswitches as antennas. IEEE Journal of Selected Topics in
Quantum Electronics 7 (2001) 615–62

[82] Lee, Y., Meade, T., Norris, T.B., Galvanauskas, A.: Tunable narrow-band
terahertz generation from periodically poled lithium niobate. Applied
Physics Letters 78 (2001) 3583–358



Index

L2 distance, 177
l2-norm, 95, 96
3D AAM segmentation, 215
3D scanning systems, 244
3D segmentation, 214
4D analysis, 215

AAM two-dimensional, 205
absorbance, 295
absorption, 173
absorption coefficient, 291

linear, 279
ACE, 187
acoustic tracking, 247
acquisition, 218
active contour, 254
adaptive target classification, 125
adaptive thresholding, 262
admissibility condition, 287
affinity, 225
algorithm

k -means, 290
6D recognition, 50
crimmins, 41
flood-fill, 259
model construction, 47, 53
MTI object detection , 142
SAR recognition, 48
similarity-computation, 16
two-class classification, 116

ambiguity function, 288
angiography, 201

magnetic resonance, 215–227
x-ray, 216, 218

apex slice, 206
arteries and veins

separation, 217
arteriovenous separation, 221
artery

femoral, 221
iliac, 216, 221

artery–vein separation, 218, 226
articulated arms, 247
articulation, 59, 82
atherosclerotic plaque

assessment, 229
lesions, 228

atmospheric transmission, 78
attenuation, 293
automatic target recognition, 115
azimuth invariance, 42
azimuthal variance, 61

background projection matrix, 126
background subtraction, 144
barycentric coordinates, 208
basal cell carcinoma, 296
basis vectors, 122
Bayesian statistical inference, 90
beer-lambert law, 291
best view, 147
bifurcation detection, 216
binary mask generation, 222
binning, 89
black-blood imaging, 197
blackbody, 172
Boltzmann’s constant, 172
border detection, 230

313



314 Index

brachytherapy radioactive seeds, 256
brachytherapy seed segmentation, 261
bright-blood imaging, 198

calibration, 171, 172
cardiac

function, 198
imaging, 193
gating, 228
magnetic resonance, 203
segmentation, 204
ventricles, 206

cardiovascular
image analysis, 193
MRI, 196

centering matrix, 95
centroid, 104
CFAR, 116
cholesky decomposition, 95
cine MRI, 199
clustering, 156, 252, 282, 289
clutter, 1, 2, 7, 9
clutter region, 9
CND, 149
coherent detection system, 274
combined distortion, 9
complex conjugate, 284
compression, 141, 154, 289
computer–aided design, 80
concave weight function, 58
conditional PDF, 20
conflict resolution, 221, 224
confusion matrix, 57
connection cost, 220
consistency region, 8
contour

deformation, 256
editing, 256

convex weight function, 59
coordinate system

cylindrical, 209
polar, 72
rectilinear, 72
reference, 47

core, 216, 217, 219
coronary

angiograms, 216
arteries, 216

coronary artery, 203

covariance matrix, 126
covariants, 102
cross-correlation, 288
CTA, 216
cube view approach, 249

data distortion models, 6, 8
DDC, 254
deformable ellipsoid model, 254
deformable model, 205
dentine, 295
detection sensors

coherent, 74
direct, 74

diffraction imaging, 273
dilation

bounded space, 222
distance metric, 149
distortion group

real, 25
synthetic, 24

distribution
binomial, 13
hypergeometric, 20
plank, 168
probability, 4, 19
spectral, 168

dosimetric analysis, 261
double inversion recovery, 228
DPCM, 156
dynamic programming 3D, 221

echo time, 197
echocardiographic, 249
echocardiography, 243
edge

detection, 253
enhancement and selection, 253
linking, 253

edge-selection algorithm, 252
effective clutter region, 9
effective size, 14
eigenfaces, 184
eigenspace classification, 148
eigenvalues, 124, 149
eigenvectors, 117, 124, 149
elastic deformation, 253
electromagnetic reflectance, 116
electromagnetic spectrum, 167



Index 315

electronic stabilization, 143
emissivity, 168, 173, 181
empirical performance estimation, 2
enamel, 295
entropy rate, 159
equal-error-rate, 186
equinox database, 170
error function, 210
Euclidean distance, 149
Euclidean norm, 127
evidence accrual, 90

face recognition, 167
Fast 3D GRE, 202
fast spin echo imaging, 228
feature vectors, 294
features, 83
fidelity, 82
first bounce, 76
Fisherfaces, 184
FLIR, 116
flow-based imaging, 201
focus of expansion, 148
fourier

coefficients, 283
decomposition, 279
methods

global, 283
local, 283

Fourier transform
spectroscopy, 272

frequency space decomposition, 280
FSE, see spin-echo imaging
FTIR spectroscopy, 282
full generalized form, 98
fundamental frequency, 283
fuzzy connectivity, 225

gadolinium contrast, 200
gas identification, 278
gaussian random noise, 119
generalized cylinders, 84
genetic algorithms, 90
geometric hashing, 48, 88
gradient descent optimization, 210
gradient matrix, 211
GRE, 198

Haar transform, 159

hanging togetherness, 225
HARP, 200
Helmert submatrix, 95
high-level processes, 282
high-pass filter, 159
Hilbert–Schmidt estimator, 5
histogram

all-similarity, 8, 16
model collision, 54
peak-similarity, 8, 16

histopathological samples, 296
Hough transform, 89
HYDICE, 115
hyperspace, 108
hyperspectral cube, 130
hyperspectral imaging, 115, 118
hyperspectral sensor, 127

ICA-based feature extraction, 122
IFOV, 80
illumination invariance, 175
incoherent detection, 272
independent component analysis, 115,

117, 120
indexing, 108
infrared imaging, 167
initialization ellipsoid, 255
insignificant coefficients, 157
intensity projection, 251
intensity ratio, 220
interclass variance, 149
interventional procedures, 242
intraclass variance, 149
invariance, 92
invariant function, 102
inversion recovery, 197
iterative refinement, 211

Kalman filter, 215
Kirchoff’s law, 173
knowledge-based segmentation, 221
Kullback–Leibler divergence, 177

ladar
3D, 72
flash, see 3D ladar
FPA, 75
projecton

orthographic, 75
perspective, 75



316 Index

sensors, 74
laser, 71
laser radars, 71
last bounce, 76
learning process, 90
likelihood-ratio test, 4
linear discriminant analysis, 184
linear distance, 220
linear interpolation, 182
linear motion, 244
lipschitz signatures, 147
local feature analysis, 184
look-up table, 47, 272
low-pass filter, 159
LWIR, 168

magnetic field tracking, 247
magnetic resonance, 228

angiography, 215
magnitude invariance, 45
manual planimetry, 252
Markov model, 159
Markov random fields, 7
matched filter, 86
matching

image-based, 85
model-based

alignment-based, 87
voting-based, 87

pixel–level, 86
maximum intensity projection, 217
mean curvature, 217
mean spectral curve, 130
mean squared prediction error, 156
mechanical assemblies, 244
medial axis transform, 217
medialness, 217, 219
melanoma, 296
memory, 163
mixed-pixel, see subpixel
model

objects, 1
set, 24
similarity, 52

monostatic system, 75
morphometrics, see statistical shape

analysis
mother function, 286
MPR, 250

MR wall imaging, 229
MRA, 215
MRI, 194, 204
MSTAR, 3, 24, 41
MTI, 142
multiple-look-angle SAR, 62
multiresolution, 155
multivariate linear regression, 211
MWIR, 168
myocardial perfusion, 200
myocardial tagging, 200

navigator gating, 196
needle insertion point, 258
needle segmentation, 256

2D, 259
3D, 259

needle vector, 260
negative evidence, 90
negative gain, 84
NIST, 171
nongaussian, 121
nuclear magnetic resonance, 194
NURBS, 84

object detection, 142, 147
object recognition

feature-based, 4
model-based, 1

object similarity, 7, 9
object–image relations, 100
obscuration, 77, 81
observations, 50
occlusion, 1, 2, 7, 9, 60
operating conditions, 72
optical properties, 291
optical rectification, 274
optical spectroscopy, 274
optimal vessel path, 223
orthogonal projection, 257

matrix, 126
orthogonal subspace projection, 126

partial acquisition, 202
PCR

lower bound, 21
upper bound, 22

PDF, 17
PDM, 204



Index 317

peak signal-to-noise ratio, 155
penetration, 275
performance bounds, 17
performance–prediction method, 6
persistence, 156
PET, 242
phantom test objects, 259
phase-contrast imaging, 201
Planck’s constant, 172
plaque morphology, 229
PMF, 44
point cloud, 83
point correspondence, 81, 99
point distribution model

2D, 205
3D, 206

positive evidence, 47
postprocessing, 219
prediction method, 3
predictor coefficients, 156
preimplant dose planning, 252
principal component analysis , 117, 184
principal components, 91
priori, 257, 259
probability of correct recognition(PCR),

3
probe, 185
Procrustean metrics, 94
Procrustes analysis, 206
prostate brachytherapy, 251
prostate mesh, 254

quality control, 278
quaternion, 207

transformation, 210

radiofrequency, 194
range image, 74
range profile, 76
Rayleigh scattering, 277
RBR edge detector, 253
real model, 49
real-time imaging, 203
reference pulse, 279
reflectance, 77
reflectance spectra, 117
reflective sensor, 80
refractive index, 290

broadband, 292

resonance, 194
respiratory triggering, 196
responsivity, 174
ROC curve, 4, 39, 50, 59, 64, 135, 145
ROI, 40
rotation, 80
run-length coding, 157
run-time, 163
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sampling rate, 287
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spectral
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spin-echo imaging, 197
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surface
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resampling, 80
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target classification, 137
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frequency band, 271
pulsed imaging, 271, 274
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transmission, 290
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threshold, 128
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time delay, 288
time–frequency analysis, 279
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transfer functions, 259
translation, 79
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tree

growing, 219
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tree construction, 220
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tree segmentation
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tree-structure generation, 222
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ultrasound imaging, 241
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3D reconstruction, 248

feature-based, 249
voxel-based, 249

conventional, 242
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uncertainty, 2, 6, 8, 257
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uniform similarity model, 13
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vivo applications, 278
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cropping, 257, 262
rendering, 259

volume rendering, 251
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wavelet, 155, 285
wavelet transform, 155
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window function, 284
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coding and DPCM coding, 155
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